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Abstract

The author investigates realized comoments that overcome the drawback of conventional ones and derive the
following findings. First, the author proves that (even generalized) geometric implied lower-order comoments
yield neither geometric realized third comoment nor fourth moment. This is in contrast to previous studies that
produce geometric realized third moment and arithmetic realized higher-order moments through lower-order
implied moments. Second, arithmetic realized joint cumulants are obtained through complete Bell polynomials
of lower-order joint cumulants. This study’s realized measures are unbiased estimators and they can, therefore,
overcome the drawbacks of conventional realized measures.
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1. Introduction

The framework suggested by Andersen et al. (2003) produces low-frequency variance from
high-frequency returns. This so-called realized variance is defined as a sum of squares of sub-
periodical returns. Kraus and Litzenberger (1976) and Dittmar (2002) demonstrate the
relationship between higher-order moments and expected returns, and the concept of the
realized variance has been extended to realized higher-order moments. In many studies,
including those of Amaya et al (2015), Sim (2016), Kim (2016), Mei ef al. (2017), Kinateder and
Papavassiliou (2019), and Ahmed and Al Mafrachi (2021) [1], a realized kth order moment is
defined as a sum of kth orders of sub-periodical returns. However, according to Amaya et al
(2015) and Bae and Lee (2021), these conventional realized higher-order moments can reflect
neither the volatility of volatility nor cross-period relation among sub-periodical returns and
are, therefore, flawed. Several studies attempt to resolve these problems by providing
unbiased realized moments, and such research is summarized in Table 1.

The revised realized moments are developed based on Neuberger’s (2012) Aggregation
Property, through which the author presents arithmetic and geometric realized third
moments using changes in prices and implied variances [2]. Bae and Lee (2021) extend the
arithmetic realized moments in two folds. One is the extension of moments to comoments, and
the other is an extension of the order from three to four. Furthermore, Fukasawa and
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Table 1.
Revised realized
moments and
comoments

Matsushita (2021) provide arithmetic moments of general orders. However, to the best of the
author’s knowledge, geometric comoments, geometric moments above the third order and
arithmetic comoments above the fourth order have not yet been developed.

The current study attempts to complete Table 1. Our first target is the geometric realized
moments and comoments. Many financial studies use geometric returns (log-returns) because
they have useful features such as time-additivity. Accordingly, Neuberger (2012) proposes
geometric realized third moment. To find the missing geometric measures in the
aforementioned table, we extend information set to include lower order moments because
all the revised moments are obtained through the lower order moments. However, unlike the
aforementioned studies, the current research demonstrates that (even generalized) implied
variance and covariance do not yield realized third comoment, although they yield realized
covariance. Moreover, we reveal that (even generalized) implied third moment does not yield
realized fourth moments.

Our second target is the arithmetic realized comoments for general orders. We previously
mentioned the usefulness of the log-returns, and as shown in Table 1, arithmetic realized
comoments up to the fourth-order are developed. However, arithmetic returns are also as well-
used as geometric returns, and financial studies require the estimation of higher-order
comoments. For example, Rubinstein (1973) extends the traditional Capital Asset Pricing
Model (CAPM)

Elr] = rs + AE[(rn — Elrm]) (r: — Eri]))]
with A = & E[ry —rs] to

Elr] =1+ iw[(m — Elry)™ (r; — Elr] )} :

1=2

and Chung et al. (2006) and Hung (2008) demonstrate that comoments above the fourth order
are priced. Accordingly, we attempt to identify the realized comoment above the fourth-order
under the arithmetic sense. To do so, we extend Fukasawa and Matsushita’s (2021) arithmetic
realized cumulants [3]. While Neuberger (2012) and Bae and Lee (2021) attempt to obtain all
functions satisfying the Aggregation Property given information set, Fukasawa and
Matsushita (2021) present a rule among realized cumulants. Adopting their methodology, we
obtain arithmetic realized joint cumulants through complete Bell polynomials of lower-order
joint cumulants. Our realized measures are unbiased estimators and they can, therefore,
overcome the drawbacks of conventional realized measures.

The rest of the paper is organized as follows. Neuberger’s (2012) Aggregation Property is
reviewed, and generalized geometric moments are defined in section 2. The non-existence of
geometric higher order moments and comoments is demonstrated in section 3. Joint

Order Arithmetic realized moments Geometric realized moments

Panel A. Realized moments

3 Neuberger (2012) Neuberger (2012)
4 Bae and Lee (2021) -

Above 4 Fukasawa and Matsushita (2021)

Panel B. Realized comoments

3 Bae and Lee (2021)

4 Bae and Lee (2021)

Above 4 -




cumulants are explained and arithmetic realized joint cumulants outlined in section 4. Finally,
concluding remarks are presented in section 5.

2. Preliminary: aggregation property and generalized geometric realized
moments

Consider a martingale process S; and a partition {#,#,...,tv} on [0, 7] such that
0=fH<h<tk<...<ty =T Equation (1) holds for 2 = 2.

N
2@%@ 0
=1

Owing to this relation, Z]Ai 1 (S, = S,fj.fl)2 is referred to as realized second moment or
realized variance. However, Equation (1) does not hold for the higher-order (k> 3), which
makes obtaining realized higher-order moments non-straightforward. To solve this
problem, Neuberger (2012) proposes the aggregation property that generalizes

Equation (1) as follows.

E [(ST - so)k} ~

Definition 2.1. Aggregation property

Let X = (X;,0<¢<T) be an adapted vector-valued stochastic process defined on a
filtration. A function g on a vector-valued process X satisfies the AP (aggregation property) if

ElgX,— X)) =EgX, — X)) +E[gX; — X,)],V(r,t,u) 0<r<t<u<T. (2

Owing to the law of the iterated expectations, when a function g satisfies the AP, we have
N

Elg(Xr — Xo)] = Ey [Zg(th _lef])] ®)
=1

In this regard, Zﬁlg(XtJ —Xj;_,) can be called a realized Folg(X7 —Xo)].

To develop the realized moments of log returns, X; needs to contain log prices s; = InS;,
and additional arguments can contribute to constructing the abundant functions that satisfy
the AP. For example, Neuberger (2012) uses As and A¢"Y that are changes in log price s; and
specific generalized variance vff , respectively. Furthermore, he demonstrates that 25 — 1, As,
AV, 25 (AN 4 2As), and their linear combination satisfy the AP when the stock price S isa
martingale. Thus, the following form satisfies the AP.

gV (As, AvY) = —12(e™ — 1) + 6As — 3A0" + 3¢* (Av" 4 24s)
= 3A0" (¢% — 1) + 6(Ase™ — 2™ + As +2) @)

Moreover, the martingale property yields E;[g" (InSr —InS;, v} —oV)] = E[K(InSt —InS;)]
for K (x) = 6(xe* —2¢° + x + 2) = x° + O(x*). Thus, Neuberger (2012) refers to,

N
> (15 - uS00f —f,) 7
=

as a realized third moment of log return InSy — InS,. However, the study presents neither any
realized comoments nor realized fourth moments. It may be resolved by additional information of
their lower-order implied comoments of log returns. According to Neuberger (2012), implied
variance contributes to constructing the realized third moment for both arithmetic and log
returns. Similarly, Bae and Lee (2021) show that realized comoments for the arithmetic returns
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require lower-order moments and comoments. Thus, implied covariance and variances of log
returns may contribute to the realized third comoment of log returns, and implied variance and
third moment of log returns may contribute to the realized fourth moment of log returns.

To consider covariation, we use two martingale processes S, and Sz, and their log
values are s1, and sy, respectively. For the variant functions satisfying the AP, we allow
flexibility on the forms of implied comoments, and we define generalized comoments as
follows [4].

Defimition 2.2. (Implied) generalized (%, ))-comoment

We refer to Ey[f*! (s1.7 — 14, 2.7 — $2,4)] as a generalized (k, l)-comoment at time ¢ when /*/ is
an analytic function such that f <‘Z D51 as (a,b) = (0,0). For convenience, we call it a

generalized (k + l)-moment and replace F* with A4 if kor s zero.

Equipped with the above log prices processes and implied comoments, we
investigate higher-order realized comoments. Consider a partitioned vector
process x = (s1,52,m), where m is a vector process of comoments. When a function
g satisfies

N
Z X 1 =L [gffl(sw — 81,0, 82,7 — Sz‘o)} ©6)
=1
with a function g*/(-, -) such that
gff‘l(sl,r — 810,827 — 320) ~ (SLT - SLo)k(Szfr - Szo)l, @)

Ey [ijil g(x; —x;,_,)]is close to ordinary comoment. Thus, a realized comoment is defined
as follows.

Definition 2.3. Realized (k,/)-comoment

For a partitioned vector process x = (s1, 2, 7) including a vector process 1, let us call
N
Zg(xfj - xtj—l) ()
=1

a realized (k, l)-comoment if a function g satisfies the AP and is decomposed as follows
2% — 2) = P(xe — %) + 8 (1.0 — S1.4, 520 — S2u), ©)

where ¢ is a function that satisfies E;[¢(xr — ;)] = 0, and g*! is a function such that that

% —1as (a,b) — (0,0). For convenience, we refer to Equation (8) as a realized (k + I)-
moment if kor [ is zero.

Note that when a function g satisfies the AP and has the decomposition in Equation (9),
we have

N

B> el

j=1

= Ey[g(xr — x0)] = Ey[g/ (s1.1 — S1.0,S2.7 — $20) (10)

Thus, it is close to the standard comoment when gf'l(slj — 510,82, —S20) &
k I
(s1,7=510)" (S2,7 —$20)"



3. Nonexistence of geometric realized higher-order comoments

Based on Definition 2.2, we denote the generalized 2-moment for theasset: € {1, 2} asv; with its
underlying function f2(-). In addition, let us denote the generalized comoment as v, with its
underlying function f11(-, -). We first investigate the function satisfying the AP given the
information set x that includes log prices (s1, S), variances (v1, v2) and covariance (v,) as follows.

Proposition 3.1. An analytic function g satisfies the AP on the vector valued process
x = (s1,82,01,09,7,) if and only if g is represented as follows:

g(Asy, Asy, Avy, Avy, Av,) = Iy (% — 1) + hpAsy + hy (€22 — 1) + Iy Asy
+ hsAvy + hgAve + Iy Av, + hg(Avy — 2A31)2
+ hg(Af)Z — ZASZ)Z + th(Ayl — 2A81)(A7)2 — ZASZ)
+ I’lu@Asl (ZAUC — Avy + 2ASz) + hlzeASZ (2A1}C — Avy + 2A51)
+ Mize™t (Avy 4 2As7) + e (Avy + 2As,)
11

for some constants 7, - - -, 14, which satisfy one of the following five conditions:
(1) /o =g = hiy = 0,1 (Asy, Asy) = Asy(e2 —1) and f2(As) = 2(e*° — As —1),
@) hi =g = hy =0,f 1 (Asy, Asy) = As (22 —1) and f2(As) = 2(e* — As —1),
@) 7 = =g = hy = 0and f2(As) = 2(e* — As — 1),
@) hg = hy = hip = h1i1 = hi2 = 0and f2(As) = 2(Ase® — As + 1),
©) hs=hy =i =hn =hz =Mz =hy=0.

The proof is provided in Appendix 1.

Proposition 3.1 uses the information of implied covariance v, in addition to the variation of
a single process in Neuberger (2012). It makes it possible to obtain new terms that satisfy the
AP: the 10th term (Avy —2As;)(Avz —2Asy) with conditions (1), (2) and (3), the 11th term
€A% (2Av, — Avy + 2As,) with condition (1), and 12th term ¢2%2(2A0, — Avy + 2As;) with

condition (2). These new terms are generalizations of (Av; — 2As1)2 and ¢ (Avy + 2Asy)
observed in Neuberger (2012) in that the new terms become these when we set Sz, to be
identical to Sy ;. The new terms may contribute to constructing new realized comoments, and
Corollary 3.2 states the result.

Corollary 3.2. When the information set is given by x = (s1, 2, v1, 02, 0, ), there is not a
realized (2,1)-comoment but a realized (1,1)-comoment.

The proof is in Appendix 1.

According to Corollary 3.2, we could not obtain realized (2,1)-comoment even when we have
all its lower-order moment and comoment. This result is in contrast to Neuberger (2012) and Bae
and Lee (2021), who obtain the realized third moment under both the arithmetic and log return
and realized third comoment under the arithmetic return through their lower-order moments.
Instead, Corollary 3.2 shows that A, with Av; or Aw, produces the realized (1,1) comoment
through

1 1..
2(Asy, Asy, Avy, Av,) = —Av, + 5 Avy + QeA"‘ (2A0, — Avy + 2As3) — Asy
12)

= (eA51 — 1) (AUC — %AW) + (eA81 — 1>A32,
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1
g(Asy, Asy, Avg, Av,) = (eASZ _ 1) (Avc — QAvl) + (g% — 1)As1. 13)

Now, let us investigate functions satisfying the AP when the information includes higher-
order moments for the single security. They are log price (s), implied second moment (72) and
implied third moment (23), where the underlying function for the kth moment is denoted
by f*(-).
Proposition 3.3. Ananalytic function g on a vector valued process x = (s, m2, m3) has the
Aggregation Property on the vector valued process « if and only if g is
represented as follows:

g(AS7 Amg, Am;g) = l’l1 (eA"' — 1) + thS + thWLz + h4A7%3

14
+ hs(Amy + aAmg — 2As)2 + hg(Amy + aAms + 2A5)e™ a4

for some constants /%1, - - -, g and g, which satisfy one of the following three conditions:
(1) hs=hg=0.
@ he = 0and f2(As) + af>(As) = 2(e** — As —1) for the constant a.
B) hs = 0and f2(As) + af3(As) = 2(Ase® — e + 1) for the constant a.

The proof is provided in Appendix 1.

Proposition 3.3 shows that three terms are satisfying the AP and containing :3; the 4th,
5th and 6th terms in Equation (14). The AP of the 4th term A is trivial because it is a (non-
transformed) given process. Except for the 4th term, Ams always appears with Az and a as
Amy + aAmg with specific forms of f2(As) + af*(As), which satisfies the condition of a
generalized second moment. Proposition 3.3 is therefore equivalent to a result under
information set x = (s,72) with a generalized second moment 7y = mg + amg that is

obtained from ]# = f2 4+ af° It implies that the additional information of 3 to the
information set does not produce any non-trivial function satisfying the AP. Related to this,
Corollary 3.4 indicates that there is no realized fourth moment.

Corollary 3.4. When the information set is given by x = (s, g, m3), there is no realized 4-
moment.

The proof is similar to that for Corollary 3.4.

4. Arithmetic realized joint cumulants

According to section 3, there is some skepticism about the geometric realized higher-order
comoments. However, as mentioned in section 1, financial studies state the importance of the
higher-order comoments even above the fourth-order. Different from geometric comoments,
arithmetic ones up to the fourth-order are available (recall Table 1). This section provides an
investigation of the arithmetic comoments of general orders. Strictly speaking, our goal is to
present realized joint cumulants. Because these are lesser-known, let us see their definitions.

Definition 4.1. Cumulants and joint cumulants

The /th cumulant of a random variable Y is defined by

!
K(Y) = %ZnE[exp(uY)] . (15)

u=0



The joint cumulant of random variables Y1, Y», ..., ¥} is defined by Geometric and

J arithmetic
K(Yl, Yg, caey Y[) = W!ﬂE exp tzl %l i (16) comoments

= =1t;=0

Recent studies such as Khademalomoom et al. (2019), Ahmed and Al Mafrachi (2021) and Cui

et al. (2022) deal with the first six moments. Accordingly, the first six cumulants «;(Y) are

described in the second column of Table 2. The cumulants are kinds of normalized moments 95
because x;(Y) = 0for [ > 3 when Y follows a normal distribution. Moreover, a cumulant is a
joint cumulant of an identical random variable with itself. In other words,

K(Y)=x1,...,Y), for i=---=Y, =Y. 17)
Moreover, for any constant number @, we have
!
K[(YM+(ZY) = (lk<2)K],kAk(YM, Y), (18)
=0

where Kl—k,k(YM7 Y) = K‘(YM, ceey, YM7 Y, cey, Y) with/ —% YMS and /& YS, and Kl—k‘k(YMa Y)
is linked to the comoment E[Y*Y*). For example, o1(Yys, Y), ... and xs1(Yay, Y) are
described in the third column of Table 2.

Fukasawa and Matsushita (2021) present the relationships between cumulants and the
AP, and the result is summarized as follows.

LTS

where B; is the Lth complete Bell polynomial defined as

EO Eo[B[ (XT - X())] = K'[ (ST) [5] (19)

L
u
Br(y,---,o1) eXp ( > ) (20
u=0
and X, = (S, M? M, ... M"Y, 0) with M = 'x,(S7). Equation (19) implies that

N

> BL(X, - X,,) @1)
j=1

is an unbiased estimator of %« (S7). Therefore, it can overcome drawbacks of conventional
realized moments. Accordingly, the authors name Equation (21) the realized Lth cumulant.
For illustration, the realized cumulants of orders 2-6 are presented in Table 3. As stated in
Neuberger (2012), Amaya et al (2015), and Bae and Lee (2021), when [ is not two, each

summand requires additional terms more than (AS, )l. For example, AMth) AS;, can reflect

leverage effect when / = 3, and AMéz) (AS, )? can reflect volatility structure when [ = 4.

By extending Fukasawa and Matsushita (2021), we provide realized joint cumulants in
Proposition 4.2.

Proposition 4.2. For martingale processes Sy, and Sy, let us define ¢V, L”"{ 1(51,82) as
follows

N L-1
M (S, 8) =) Z(é - 1)BL_k (AZ\QLO’, . -,A]%L_k’o)>AMék_l‘” 22)

j=1 k=1
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The first six cumulants

Table 2.
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Table 4.

The 2-6 realized joint
cumulants



with A]Wé,l_k‘k) = Mtfl_k‘k) — M and Mfl_k‘k) = 'k_p2(S11, S2.7)- Then, we have

li-1

By [eM;)1(81,5)] = “%-11(Sur, Sor). @)

Proof is provided in Appendix 2.

Based on Proposition 4.2, we can measure the relationship between S; and S, well through
C f_’l{ﬁl (S1,S2). Because of Equation (23), it is an unbiased estimator of Oy — 11(S1,7, So.7).
Therefore, it can overcome drawbacks of conventional measures. For illustration, detailed
forms of cM[_”f{l (S1,S2) up to order six are presented in Table 4. Like the result of Table 3, it

shows that the fifth joint cumulant ¢/’ f{” (S1, S2) requires more than Z]A; 1 (ASL,/;.)“ASZ@.. For
example, it additionally requires Z;‘Ai ] AMé4’O)ASzﬁ,fj, which is related to covariation between
the second asset return and the kurtosis of the first asset return. Similarly, cMgfl‘”(Sl, Sz)
requires more than ZJI\L 1(ASl_rtj)SASz_,,j.

5. Concluding remarks
Neuberger (2012), Bae and Lee (2021), and Fukasawa and Matsushita (2021) demonstrate that
realized third geometric moments and realized arithmetic moments of any orders are obtained
by combining their lower-order implied moments and comoments. Extending the information
set is therefore a natural trial to yield the higher order moments and comoments. Unlike
previous studies, we show that geometric lower-order implied comoments do not yield
geometric realized fourth moment and third comoment but yield geometric realized
covariance only. The main reason for the non-existence is that the extension of the geometric
information set does not produce additional non-trivial terms; the productions are only
transformations of Neuberger (2012). Although this approach does not yield a meaningful
measure, presenting this result can prevent the same trial and error for other scholars.
Furthermore, we yield the arithmetic realized /th joint cumulants, which are linked to
E[(St.7—S10)7 (So.r — S.0))- Several financial theories apply them; for example, the extended
CAPM includes E[(ry; — Ery]) ™ (r; — E[ri])] for I > 2. Given the drawbacks of conventional
realized comoments, we believe that empirical studies can use our measure in the future.
Depending on combinations of assets, there are other joint cumulants such as
El(ry-E [VM])Z_Z(ri -E [rl-])z} or El(ry—E [rM])l_S(rl- -E [Vi])?’]. We do not investigate
them because they currently seem irrelevant to financial studies. However, we may obtain
them as proof of Proposition 4.2 when the financial studies require them.

Notes

1. They use the realized moments for various purposes. Amaya ef al (2015) and Sim (2016) show that
realized third moments can explain stock returns. Kim (2016) investigates the forecasting power of
implied moments about realized moments. Mei ef al (2017) show realized third and fourth moments
are related to future volatility. Kinateder and Papavassiliou (2019) show that realized fourth moment
can predict sovereign bond returns during a crisis. Ahmed and Al Mafrachi (2021) show that realized
moments up to the fifth-order can explain cryptocurrency returns.

2. Implied moments can be obtained from options (Bakshi and Madan, 2000; Bakshi ef al., 2003; Kang
et al., 2009; Neuberger, 2012).

3. Cumulants are normalized moments. See section 4 for details.

4. The rest of this section is preliminary of section 3 that proves the non-existence of the geometric
realized comoments. Therefore, readers that are only interested in the form of the realized
comoments should move to section 4.
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5. Aleft superscript £ of k means a time-# conditional one. For example, x; (V) = %‘,_ nE[exp(uY))
u=0
6. The ten coefficients, by, - - - , b5, b12, b14, ba3, bos, and bog are replaced with ds, - - - , dy4. More precisely,
(ds,ds, d12, d13) replace (b1, by, b2, bas), (ds, dy, d11, ds) replace (b2, b3, b1, bos), dio replaces bos, and

dy replaces by, given bz and b1s.
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Appendix 1

Proofs for Propositions and Corollaries in Section 3
Beginnings of the proofs for Propositions 3.1 and 3.3 are identical. We denote them as common property
A as follows:
Common property A: A common necessary condition of g that satisfies the aggregation property.
Consider a vector-valued process {(InS (£), InS2(¢), M (#)) : t = 0,1, 2}. In addition, let

R
(S1.1, 821, @) - <S1,1 + 11,821 + 1y, O) Pr=m

msns0: 0om - | (2 0) = (nse) br=m
.(31117321176)) - .<sl‘7z,52_1176>) i’r:ﬂn
t: 0 — 1 N 2
(A1)

n n
with Y7, =1, Yo mrexp(s;;) = 1, Elexp(n,)] = 1, E[f*(n,m,)] = ars, @ = (a0, 21, 202, 203) and
=

j=1 =1
m = (mgg, M1, Moz, Mo3) Where

M) = ﬂlE[ M (s10 4 1,820 + ’12)} + Zﬂ]fk’l(suaszﬂa (A2)

j=2

and f*' is a generalized moment function such that /#4(0,0) = 0, lim £ k:ﬁ‘;;b) =1,/*(a,b) = f*(b,a),

(a.0)=(0.0)
and f*(a) = f**(a, ).
When the process satisfies the aggregation property, we have

Elg(s11 +my, 821 + 115, —m)] = g(s11, $2.0, @ — m) + Elg(ny, 15, —a)] (A3)
with g(0, - - -, 0) = 0. Differentiating Equation (A3) with respect to the (¢ — 2)th term of m, we obtain
Elgi(si1 + 1,821 + 1y, —m)] = gi(S11, 821, —m), for k=3,---,6, (A4)

where g; is a partial differentiation with respect to the kth term. By substituting (s11,s21) = (0,0) and
m = a into Equation (A4), we obtain:

E[gk(’?h’72»_a)] :gk(oaoaﬁ)v for k:3776 (A5)

Then, by Lagrangian, we have

ge(s1,82, M) = apo + Ap1 (M) (" — 1) + Apo(M)(€2 — 1) + Aps(M) (f*(s1) + M)
+ Apa (M) (f (s1,82) + M) + Aps(M) (7 (s2) + M)
+ Akg(M) (fg(sl) + Mgfo)
(A6)

where @ is a constant and Ay;,---,Ags are functions of M. If we substitute Equation (A6),
(811,521) = (0,0) and m = a except for the (I —2)th term into Equation (A4), we obtain:
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%13%28 Apy(=m)(as —mys) = Api(0, -+, 0,05 — my_,0,---,0) (a2 — mys). (A7)

Because 7, s;; and a are arbitrary, Ay 3(M), - - -, Aj6(M) are constants. Thus, Equation (A7) is can be
rewritten with notations of a3, . . ., @, as follows:

ge(s1,82, M) = apo + Apa (M) (" — 1) + Ao (M) (€2 — 1) + a3 (2 (s1) + Moy)
+ G4 (fl’l (s1,82) + Mm) + Qs (fz(sz) + Mo,z) + Qe (fs(sl) + Ms,o)-

102 A8)

To investigate Ay (M) and A 2(M), let us substitute (A8) into (A4) and differentiate it with respect
to my. It yields

aAk"l(—Wl) _ aAkvl((l — m) aAkz(—Wl) _ 8Ak,2(a — m)
anl aml ’ 01%1 aml

for [=3,...,6. (A9)

Therefore, A1 (M) and A 2(M) are affine functions. Accordingly, (A8) is represented as follows:
Gr(S1,52, M) = apo + (bro + bp1Map + bp2Miy + brsMos + bpalMzp) (e — 1)
+ (cro + ceiMao + croliy + crsMos + coaMsg)(e? — 1)
+ a3 (f2(31) + Mz,o) + Q4 (fl'l (s1,82) + Ml,l) + ars (fz(Sz) =+ Mo,z)
+ apg (fS(Sl) + M3.0)~
(A10)

Proof for Proposition 3.1
(Proof for the first statement)

We use the common property A with restricting the M = (V1, Va, V,) with Vi = My, Vo = My 2
and V, = M, ;. Similarly, we use notations m = (v1,v2,v,) and a = (a1, a2, a;). In addition, f and f,
replace /2 and /11, respectively. By integrating (A10) with respect to V3, V. and V», we can obtain three
different forms of g(s1, s2, V1, V2, V) as follows.

1
150 Vi Ve V) =V (BaVh 4 V2 + bl Vi baliba )@ - 1

1 .
+ (CLO Vl + ECLI V12 + €12 V1 VC + €13 V1 Vz) (652 — 1)

(A11)
+as (f(sl)Vl + %Vf) +a14(fo(s1,82) Vi + V1 V,)
+ars(f(s2) Vi + ViVa) + &' (s1, 82, Vo, Vo).
(51,82, V1, Va, V) = azo Ve + (bz,ch + b1 VIV, + %bg‘z VZ+ boy VCVZ) (e —1)
+ (cz‘,o Ve+ ViV, + %czz Vc2 +c23Ve Vg) (e? 1)
(A12)

1
+ax3(f(s1)Ve+ ViVe) + az4 (fc(sh so) Ve + §VL2>

+as5(f(s2) Ve + Ve Vo) +g2(517527 i, Ve).



1
(51,82, V1, Vo, Vo) = aso Vo + (bs,o Vo4 b3 1 ViVo+ b3 VeVo + Qbs,s V22> (" —1)

1
+ (ng() Vg +C31 V1 Vg + C32 VC Vz —+ 2633 VZZ) (eSZ — 1)

(A13)
+as3(f(s1) Vo + ViVa) + asa(fe(s1,82) Vo + V. Va)
1
+ ass (f(Sz)Vz -+ §V22> +g3(3175‘2, V], Vz)
with some functions g', g% and g°. By combining Equations (A11), (A12) and (A13), we obtain
(51,82, V1, Vo, Vo) = bo Ve + 0i Vi + 0o Vo + (€7 — 1) (b3 Ve + by Vi + b5V
+ bV Vi + 0V, Vo + bg ViV + bgi + blon2 + bHVZZ)
+ (2 —1)(b12 Ve + bisVi + b Vo + bis Ve A
+ blGVCVQ + b17 V1 V2 + blg Vrz + blg V12 + bzo sz)
+ ba(f(s1) Ve + ViVe + Vife(s1,82))
+ b (f(s2) Ve + Vo Ve + Vofe(s1, 82))
+ bas(F(s2) Vi + ViVa + f(s1) Vo) + baa(2fe(s1,52) + Vo) Ve
+bos(2f (s1) + V1) Vi + bas (2 (s2) + V) Vo 4 &°(51,52)

for some constants by, - - -, bys and a function g*° such that g5(0,0) = 0. ( ) Pr=p
Based on (11, ), which are in Equation (A1), let us construct (i}, 1) = { (gl 67)72 br— - -

aconstant pin[0,1]. Fori € {1,2}, wehave E[¢"'] = 1, E[f (n?)] = ajpand E[f: (2, n%)] = ap. Then, by
substituting Equation (A14) into (A3) and (), %) into (171, 7,), we obtain:
bsa, + by + bsaz + bs(acamp — anve — acvy)

(A14)

for

0=p(em —1)| + br(map — agw, — acvz) + bg(aragh — azvr — ay03)
+ bg (afp — 26151)5) + blO ((Xib — 2(111}1) + bn (azzp — 2&21)2)

bio@. + bizan + by + bis(aconp — v, — av1)
+ p(e —1)| + bis(aacp — asv. — av2) + biz(onaap — a0y — ovs)
+ big ((12-17 - 20,0;) + i (Cﬁﬁ — 204q01) + by ((12217 — 20505)

(Elf (su +m)] —f(s11) — a)ve + f(su)ae + alﬁ(slhsm))
+ (Elfe(su + 7]1,321 +115)] — fe(S11,821) — a)vn

+ f)bﬂ(
( (Elf (s +13)] — f(521) — a2)ve + f(S21) e + 052fc(511,321)>

(A15)

+ j)b
2\ EV(sn 41,591+ 1)) — filsin, sa1) — @)y

E[f So1 +112)] — f($21) — ag)v1 + f(Sa1) o + f(su1)
b + (Ef (su+m)] —f(sn) — an)e )

+ 2pbay (Elfe(s11 + 1y, 821 + 112)] — fe(S11,821) — @c)ve + fe(s11, Sa1)axc)
+ 2pbos((Elf (su1 +m)] — f(su) — an)or + f(sn)an)

+ 2pbys((EVf (21 + 1)) — f(S21) — @2)vz 4 f(S21)t2)

— DEIG (sn1 + 1,82 +1)] + pg*(s1,82) + PEIS (m1,15)]
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Because (A15) holds for arbitrary p, the coefficient of p? should be zero.
0= (" — 1) (beacas + braza, + bganaz + boa? + bioas + biaj)
+ (€” — 1) (bisacon + bigazax, + by + bisa? + bigat; + bzoag)
Furthermore, because s11 and ss1 are arbitrary, we have:
bea.oq + braza, + bgayas + bgaf + b1 + s =0
bisacon + bisasa, + biyoanay + blsaf + lea% + bzoag =0

Given a1 and ap, we can construct arbitrary a,. Therefore, Equation (A17) yields:

by = beay + by = bganay + bloa% + bua% =0

(A16)

(A17)
(A18)

(A19)

Adopting this logic to Equation (A18) instead of (A17) and to @ or a» instead of a,, we can obtain

b6:b7:"':b11:0 and b15:b16:"-:b20:0

Additionally, because the coefficient of p in Equation (A15) is zero, we have:
0= (" —1)(bsa, + byon + bsaz ) + (€ — 1) (b2 + bisaq + bz )

by ( (Elf(su+m)] = flsu) —a)ve +f(su)ae + aLfc(sllvsﬂ))
H(Elfe(s11 + 11,821 +15)] — felsu1,821) — ac)vn

b ( (Elf(s21 +12)] = f($21) — a2)ve + f(s1) e + aofc(s11, 821) )
+(Elfe(s11 + 11,821 +15)] — fe(s11,821) — @ )2

by ( (Elf (s21 +12)] = f($21) — az)vr + f (s21)ena +f(311)052>
+(Ef (s +m)] —f(sn1) — ar)oe

+ 2024 ((Elfe(S11 4+ 111,521 + 119)] — fe(S11,821) — @c)ve + fo(S11, 821) )

+ 2055 ((E[f (511 +m1)] — f(s11) — an)vr +f(su) o)

+ 2o ((E[f (521 +12)] = f(s21) — @2)v2 + f (s21) 22)

— E[g* (s + 1,821 +15)] + & (s1,52) + Elg* (11, 75)]

Because v, is arbitrary, the coefficient of v, is zero. Thus, we have

by (ETf (s +m)] = f(su) — a1) + baa(Elf (s21 4+ 115)] — [ (s21) — @2)
+ 2004(E[fe(s11 + 111,821 + 115)] — fe(S11,521) — ) =0

Now, consider a random variable 15 with 5 2 1o and E[f:(n1,13)] # Ef: (11, 112)]. Then,

bor (Elf (s11 4+ my)] = f(s11) — 1) + bz (Ef (521 + 115)] — f($21) — a2)
+ 2bos (Elfe(s11 + 11,821 +13)] — fe(s11,821) — Elfe(my,13)]) = 0

By subtracting Equation (A23) from Equation (A22), one can see that by, = 0 or

Elfe(sun +ny,821 +n2)] = Elfe(s11 + my, 821 +n13)] + Elfe (1, 12)] — Elfe(n1,13)]-

When we substitute

_ J (In(1+%),In(1+k),In(1 —%)) Pr=1/2
(1 1120715) = { (n(L ) (1 &) In(1 £ 7)) Pr—1/2

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)



1

into Equation (A24) and multiply both sides of the equation with 5z and take the limit with £ — 0, we get

&fe(x,3)
)1 A2
dxdy (A26)
Hence,
Se(s11,821) = suSar + Fi(su1) + Fao(sz) (A27)

for some functions F; and F, Then, applying the condition of ( l)in(loof’gc"v‘y) =1, we obtain
Xy)—= (0, -

Je(s11,821) = s11S21. By substituting it into Equation (A22), we obtain the following equation:

bor (Elf (s +m)] — f(su) — a1) + bao(Elf (s21 + 115)] — [ (s21) — @2) + 2bau (s E )]
+saE[m]) =0
(A28)

When s1; = 0, Equation (A28) becomes b (E[f (S21 + 119)] —f(s21) — @2) + 2b2asa1E[n;] = 0. Because
n; can be chosen independently on sy; and 75,

by = 0. (A29)

The logic between Equations (A22) and (A29) shows that multiplier of E[f:(su +ny,
Sa1 +1g)] —f(s11,521) — a 1s zero. For alternatives of Equation (A22), as the coefficients of v; and v
instead of v, in Equation (A21), the same logic yields

by = by =0. (A30)
Because the coefficients of 1 and v in Equation (A21) are 0, equations (A29) and (A30) implies:

bos(ETf (s21 +15)] — f(s21) — @2) + 2bos(E[f (s11 +11)] — f(s11) — 1) (A31)
= bos(E[f (su1 +m)] = f(s11) — 1) + 2bos(E[f (s21 + 112)] — f (s21) — az) = 0.

Substituting s1; = 0 or s9; = 0 into the (A31) yields:

bos(Ef (21 +15)] — f (s21) — a2) = bos(E[f (s11 +m1)] — f(s11) — 1) (A32)
= boa(E[f (su1 +m)] = f(su1) — a1) = bos(Elf (s21 +11)] — f(s21) — a2) =0

Thus,
Elf(s+m)] —f(s) —Ef(n)] =0 or bs = by = by =0. (A33)
Here, according to Neuberger (2012), E[f (s + )] —f(s) —El[f(n)] = 0is equivalent to
flx)=2(e"—1—x). (A34)

In sum, combining (A21) with (A29), (A30) and (A33) yields

0= (6311 — 1) (bgac =+ b40{1 =+ b5(,¥2) —+ (8521 — 1) (blgac —+ b13(11 —+ b146{2)
+ o3 (f(s21)ar + f(s11) a2 ) + 2basf (s1) o + 2bosf (Sa1)ats (A35)
— E[g’ (su + 1,821 +15)] + & (s1,82) + E[g°(11,75)]

{ (In(1+%),0) Pr=1/2

(In(1-%),0) Pr=1/2’ and taking

To Equation (A35), multiplying 2/4% substituting (i7;,7,) =
the limit yields:
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0= 2b4(€sn — 1) + 2b13(€s2l — 1) + 4b23(6521 -1- 321) + 8b25(€sn —-1- Sn)

_ 62g5(sn,321) 4 6g9(sn,821) Bzg‘*(O, 0) _ ng(O, 0) (A36)
63{1 6311 68%1 (9511 ’

(0,In(1+%) Pr=1/2

(0,In(1-k)) Pr=1/2’

0= 2b5(e™ — 1) + 2b14(e™ — 1) + 4bos(€™ — 1 — s11) + 8bos(¢™ — 1 — s21)

Similarly, when use (17;,1,) = { we can obtain

&g (su,8m)  0g°(su,8m)  0°¢°(0,0) ~0g°(0,0) (A37)
- 5 + + .
6521 (9821 (3821 (9821
Alternatively, let us multiply i to Equation (A35), substitute (A38) and (A39) into Equation (A35), and

subtract the equation obtained by the former substitution from that obtained by the latter; then, by
taking limits, we get (A40).

In1+%) Pr=1/2

_ [ (In(1+k), )
(’71”72)*{(2( —k),In(1-F) Pr=1/2 (A38)
_ J (In(1+k),In(1 —k)) Pr=1/2
(’71”72)_{(2( (k) Pr_1/2 (A39)
0= bg(em _ 1) +b12(€£21 _ 1) _ d gs(3117321) + azgs(ovo) (A40)

911821 011521

Then, the solutions of Equation (A40), (A36) and (A37) are given as
2(x,9) = bs(€" — x)y + bia(€ — ¥)x + I (x) + o (y) + borxy (Ad])
2 (x,y) =2by(e°x — & + x) — 2b13(€" — 1)x — dbysx (¢ —y — 1)

T dbos (2% — 26 + % + 4x) + Eha(y) + a(y) + bogx (A42)
g'(x,y) = 2b1(e’y — € +y) — 2b5(¢" — 1)y — dbyy(e" —x — 1) (Ad3)
+ dbys (2¢"y — 26" + ¥* + 4y) + €h5(x) + hg(x) + ooy
for some functions /%, - - -, g and constants b;. Therefore, g°(x, ) is a linear combination of ¢y, €'x, xy,

¢x,¢%, 1% x, €'y, &, ¥, yand 1. The consistency in the coefficients of e*yand ¢’ xrequires by = —1bs — 2bx3
and by; = —1by, — 2by. Thus, by Equation (A14), (A20), (A29), (A30), (A34), (A41), (A42), (A43) and

2°(0,0) =0, gand g° are given by

(81,82, V1, Vo, Vi) = bo Ve + 01 Vi + bo Vo

+ (bSVc + b4 Vl - <§b3 + 2b23) Vz) (esl — 1)

1
=+ <b12V£ — (éblz =+ 2b23> V1 =+ b14 Vg) ((Zsz _ 1) (A44)
+ b23(2(6‘32 — S9 — 1)V1 + V1V2 + 2(6’3l — 81 — 1)V2)
+ b25(4(851 — 85 — 1) + Vl)Vl + bza 4(632 — Sy — 1 -‘r Vz)Vz +g5(81782)
gS(ShSz) = dl( & — ]_) + d9$1 + d3(es2 _ 1) =+ d432 + 4b23$152 + 4b25$1 (A45)

+ 4b2682 + b3e’'sy + bipe®s) + (2b4 + 8b25)63151 + (2b14 + 8b26)€§282.



(A44) and (A45) can be arranged as
(51,82, V1, Vo, Vo) = di(e" — 1) + dos1 + ds(e”? — 1) +dyso + ds Vi + ds Vo + dr Ve
+ dg(vl — 231)2 + dg(VQ — 282)2 + le(Vl — 231)(V2 — 282)
+ dpe 2V, — Vo + 2s9) + dy2e? 2V, — Vi + 251)
+ di3e™ (Vl + 281) + dyye™ (Vz + 282)

(A46)

where ds = by — by + 3012 —4bss, dg = by + b5 — biy —4bs, d7 = by — b3 — b1, ds = s, do = bsg,
dio = bas, diy = %b& diz = %blz, i3 = by + 4bos and dyy = by + 4bss [6].
Substituting these into equation (A3) yields the following:

0= ng( — U1 — 2811 + 051)(0(1 + 2E[7]1]) + 2d9( — Uy — 2821 + az)(az + ZE[Y]Z])
+di(( —v1 = 2sn + o) (az + 2E[n,]) + (= v2 — 2821 + @) (on + 2E[my]))
+ (¢ = D)(dis(an — 2E[n,e"]) + dn (20 — 2E[n,e"] — az))
+ (¢ = D)(du(az — 2E[n,e"]) + dro (20 — 2E[m,€"] — o))

(A47)

Since coefficients of v1 and v are zero, E[f(1)] = E[ —2n] or ds = dy = dyp = 0. In addition, because
s11 and so are arbitrary,

0 = dis(ay — 2E[pe"]) + dn (20, — 2E[n,¢"] — az) (A48)
0= d14((12 — 2E[7]2€”2D + d12(2ac — 2E[7]1€}72} — (11) (A49)

Conditions of Equations (A47)-(A49) can be fulfilled with one of following five cases.
(1) If dy; is not zero, for some constants &; and k&, we have

1 d
el my) = o™ + 5 (1) + fi (2me" —f(m)) +R(e" =1) + k(e —1). (AS0)

Then 22 (2n,eh —f +R(en —1) =0 and 1f(ny) + ka(e® —1) = —n, because ZE2 1 as
2d, \“M m AP 2

Xy
(x,9) = (0,0). Accordingly, k; = —1 because fg)—& as ¥— 0. This implies that & = dis = 0.
Therefore, fc(i11,712) = n2(e™ —1), 7 () = 2(¢" —n —1). Then, diz = ds = 0.

(2) Similarly, if dj2 isnot zero, £+ (1, 19) = np(e™ =1),f(n) = 2(e" —y —1)anddy = dis =diy =0

Alternatively, when di; = djo = 0, Equations (A47)-(A49) implies there are three more conditions as
follows:

Q) dn =dip=diz =duu=0,f(n) =2(e" —n —1), with arbitrary function f..
@) dy=do=dyp=dn=d=07r(n) =2(ne" —e"+ 1), with arbitrary function f,.
(B) dg =dy = dvy = dv1 = dro = di3 = dy4 = 0, with arbitrary functions f and f.

(Proof for the second statement)

For the proof of the sufficiency of Equation (6) for the AP, we show that the function g in Equation (6)
satisfies the SAP (strong aggregation property). Ejg(X, — X)) = Eilg(Xy = X1)] + E:lg(X; = X)),
which is stronger condition than the AP of Equation (2). The SAP of the first seven terms in the equation
is obvious. The 10th term is a generalization of the 8th and the 9th term and all these three terms do not
vanish only if f () = 2(¢” —n —1). Thus, SAP of 10th term implies the SAP of 8th and 9th terms. For
convenience, let

Gu-,l‘ = ¢1,u1l¢2‘u,z (Ab1)

with
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Givi = Vi = Vig — 2510 — 5i0))  for i€ {1,2} (A52)
and
Vis = E2(e%77 — (si7 — Sir) — 1)) = Et[-2(si7 — Six)] = E[Viu — 2(Siw — Sit)]
for 1€{1,2}.

(A53)

Then, we have

Ei[Guo) = Ei [ (P10s + Dr0) (Pour + Poro)] = i [PrusPous + PrroParo
' :Et[[éu,t] + Go. )t ) [ ] (A54)

Thus, we have the SAP of 8th and 9th terms as well as the SAP of 10th term.

Additionally, the SAP of the 11th term under the condition (1) implies that of the 12th term under the
condition (2) and the 13th and 14th terms under the condition (4). Thus, we finish this proof by showing
Equation (A55).

EF) = ElF ) +Fo, 0<t<u<T, (AD5)
where
F,, =E, [es (17” — V4230 — w)] (A56)
and
Vi=2E [(so.1 — s20) (€771 — 1) — (€272 — (557 — 5,) — 1)]. (A57)

Equation (A57) is represented as:

/Vl = 26975 (59,7 — 53,)]
— Et[2651‘7_51"‘631'”_31" (SZ.T — 32#)} + E [2@51'”_5“ (321,, — Szﬁt)}

R (A58)
=FE {eslv“‘s“ <Vu + 2(S2u — Sz,t))] .
It implies
ElF.]=E {es (ﬁ, +2(sp — sm) - f/f} =0 (A59)
and
Ei[F,o| = E {e‘“-u““‘) (TA/M — Vo + 2(s2 — 52.0))}
=E, [@Lu—slfesw‘sw (IA/,, + 2(s34 — S24) — Vo+ 2820 — 52.0))] (A60)
=FE [e-ﬁ-r*-“m (IZ — Vo +2(s0s — Sz.o))}
=Fp.

Due to Equations (A59) and (A60), Equation (A55) holds.



Proof for Corollary 3.2
If a function is a realized (k,1)-comoment element for % € {1, 2}, Equation (11) should be decomposed as

g(Asy, Asy, Avy, Avg, Av,) = (eA81 — 1)(1)1(A1;17 Avy, Av,) + (eASZ — 1)¢2(Avl, Avy, Av,)

+ 5" (Asy, Asy)
(A61)

such that g”(Asy, Asy) = O((As; )" As,) because of the restrictions E[e®%] = 1 and E[¢2%] = 1. (Av;)?
cannot be a part of (¢2 —1)¢; (Avy, Ave, Av,) or (€A% —1)dy(Avy, Ava, Av,), as well as g" (Asy, As),
because it is only in /ig(Av; — 2Asy )2; thus, we have /g = 0. In a similar manner, by considering (AUQ)Z and
A1 Avo, we have hy = hyg = 0. Accordingly, e As, and €% As; are only cross-terms between As; and
Ass. Therefore, none of condition (3), (4) or (5) can generate a realized (k,1)-comoment element for & € {1,2}.
Under the condition (1) in Proposition 3.1, 2! As, is the only cross-term between As; and Ass. In the
remaining terms, we have 5 = 0, sig = &1, and h; = —2hyq to separate Avy, Av,, and Av, from
g (Asy, Asy). Then, the remaining term /iy (e —1) + hoAsy + hg(€®2 —1) + hyAsy + 2h11€25 Asy is
at most O(As;Asz) as (Asy, Asz) — (0,0) when /iy = hy = hs =0 and gy = —2h4;. It cannot be of
O(sfsz), and it is a realized (1,1) comoment when /iy = —1.
In a similar manner, under condition (2), the function is at most is at most O(s1sz), and it is a realized
comoment when /iy =hs =hy=hg=hg=hg =hio=0,he =hy = =1, hs = Inpy = 1/2.
|

Proof for Proposition 3.3
(Proof for the first statement)

We use the common property A by omitting all terms related to the second security. Thus, g is a
function of 51, M> and Mz where My = My oand Ms = Ms . By integrating (A10) with respect to Ms and
M3, we can obtain two different forms of the function g:

1
g(s1, My, Mz) = a19M; + (bl,oMz + ébl,lez + b1‘4M3M2) (e"—1)

(A62)
1
+ a3 <M2f2(31) + QMZZ) + a16M (fs(sl) + Mz) +4' (s1,Ms)
and
1
261, M M) = s+ (buabls-+ b + b ) @ 1)
(A63)
1
+ az3Ms3 (fz(sl) + Mz) + @26 (fs(sl)Ms + §M32> + &% (s1, M)
with some functions g' and g% By combining (A62) and (A63), we obtain
g(s1, Mz, Ms) = a1 My + a;Ms
+ ((lgMz + d4M3 + 6l5M22 + d@MzMg + a7M§) (esl — 1) ABA
+d3<M22+2M2f2(81)) +6l9(M32+2f3(81)M3) ( )
+ 2a10 (MoM; + 2 (s1)Ms + (51 M) + &°(s1)
for some constants ay, - - -, @19 and a function g* such that g°(0) = 0. Using the #, in Equation (A1), let us
constructn, = { gl glr_ zll) —p for a constant pin[0,1]. Then, by substituting Equation (A64) into (A3)

and replacing n with 77, we obtain:
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JDQS (@ 30y + Ay — 2asMmay
30,2 a <+a6 (—maaz — maz) — 2a7M3as>
+ 208((f2(51 1) = fA(su) — az)mz + azfz(sl.l))

0=p| + 2a((FP(s11 +m) — F(s11) — as)ms + asf(s11))

110 o ( (s +m) = f(511) — a2)ms + aaf(s1,) )
+(F (10 +m) = (s11) — as)mz + aof*(s11)

= Elg'(s11+m)] + & (s11) + Elg’(m)]
+ (e — 1) (a50 + asazats + a703)

Because we can set p arbitrary, coefficients of p and p? are zero. Therefore, we have

(A65)

a5a§ —+ agoas + d7(1§ =0 (A66)
and

(e 1) <Clgaz + a3 — 2a5maats )
+ ag(—moas — mzaz) — 2a7;m303
+ 2518((][2(31,1 +my) = (s11) — 062)7"’!2 + azfz(sm))
+ 2&9((](3(31,1 + 7]1) *fS(Sl‘l) — ag)WL3 + a3f3(sl_1)) =0. (A67)
+ 2a10< (F(s10+m) — 2 (s11) — az)ms + aaf*(s1,1) )
+ (fs(sl.l +my) = (s11) — 063)”’!2 + aof*(s11)
— Elg*(s11 +m)] + & (s11) + Elg* ()]

Equation (A66) implies that
as=as=a; =0 (A68)

because #, is an arbitrary random variable with E[e"] = 1. Also, in Equation (A67), coefficients of 2,
and 3 are zero because we can set arbitrary values for them. Thus, we have:

0=ag (fz(sl‘l +my) = A (s11) — 012) + ai (fg(SLI +m) —f(s11) — 0!3) (A69)
0=ay(f*(s11+m) —f(s11) — &) + @ (FP(s11 +m) — F(s11) — ) (A70)

There are three cases that satisfy both (A69) and (A70). We call them condition A.1 as follows:

Condition A.1
(1) 3/3 such that V(s1, 1), f3(s11 +m) —/*(s11) —az = Oand ag = a19 = 0,

@ 3(a,f?,f3) such thatV(si1,m), f2(s11 + 1) —f2(s11) —az +a(fP(si1 +m) —f3(s11) — )
= 0 with a1 = aga and ay = a®as,

(3) asg = ag = ayp = 0.

In(1+#%), Pr=05 into
In1-%), Pr=05

Z(F (st +m) —/3(s11) —as) = 0, using hmf &) — 1, and taking the limit for & — 0 yield:

(fg)”(sl,l) - (fs)/(sl,l) =0 (A71)

First, we check the condition in A.1.(1). Substituting #; =



Thus, f3(s1.1) = bie*t + by for some constants b1 and b,. However, there are no b; and b, that makes Geometric and
lin(l)f "9 — 1. Therefore, condition A1 (1) is impossible. arithmetic
X
Second, let us check condition A.1.(2). Substituting f“(x) :fZ(x) +af? (x) and n; = comoments
In(1+%), Pr=05. .
{1§E1 —k)) P; —05 into f2(s11 +m1) —f2(s11) —a2 +a(f3(s11 +m) —f(s11) —as) = 0, using

m — Land lim"f = 1, and taking the limit for k0 yield

Ii
=0 ¥
()" (s11) = (f) (s11) =2 =0 (A72)

Thus, we have f%(s11) = b1e®! + by — 2511 for some constants b; and b. Because of the conditions
lin(l)f% =land lirréf% =1, /2 has the following form:
X x—

111

FAs) =2(¢F —s — 1) —af’(s). (A73)
Substituting (A68), (A73), and Condition A.1 (2) into (A67) yields:

Elg (s11+m)| —&'(s11) — Elg’(m)] = (¢™ — 1) (azaz + asa3) (A74)
+4d8(ag =+ aag)(es” — 811 — 1)

Equation (A74) with ag = 0 satisfies (A67) with (A68) and condition A.1 (3). Therefore, Equation (A74) is

In(1+%), Pr=05

a general equation for g°. Again, by letting 1, = and taking the limit, we can
1 In(1-4),

Pr=0.5
obtain a differential equation:
(&) — (&) +2a3(¢ — 1) + 8ag(¢’ — s — 1) = const. (A75)
Using g°(0) = 0, g° is represented as follows:
() = aos + ay (e’ — 1) + 4ass® + (8ag + 2a3)se’ (A76)

with additional constants ag and ay. Substituting it into (A64) yields:
g(S,Mz,Mg) = dle + dzMg + (dgMz + Cl4M3)(€$ — 1) + ng(MQ + ClMg — 23)2
+ dag(My + alMs) (¢’ — 1) + ags + aro(€® — 1) + (8ag + 2as)se’  (A77)

or
g(S,Mz,Mg) = d1M2 + dzMg + dgM3€s + d4(M2 + ClMg — 23)2 + d5(M2 + llMg + 23)63

+des+dr(e — 1)
(A78)

where dl =a —as, dz =ay —Aay, dg = ay —aas, d4 = dasg, d5 =az+ 4@8, d5 = dg and d7 = d]g. Then,
substituting these into (A3) yields

d4(4$1$] + 2(7%2 “+ams — ay — aag))(E[zﬂﬂ —+ s + aag) + (e‘” — 1)(d5(E[27’]1€'h]

AT79
— 0y — aag) — dg(lg) = O ( )

Because s; is arbitrary, we have the following cases.

Condition A.2
(1) d3=dy=ds=0
@ ds=ds=0and E2p] + oz + aazs =0



JDQS @) dy=0and E[2g,¢"] —ay — has with i = a + ds /ds.

30,2 Recall that E[e" —1] = 0, = E[f" ()] and% — 1for 5, — 0. Therefore, when condition A.2
() holds, we obtain f2(As) + af°(As) = 2(e®* —As —1). Next, condition A2 (3) is equivalent to
ds = dy = 0 with

E2ne"] — oz — aaz = 0, (A80)

112 which implies that

F2(As) + af®(As) = 2(Ase™ — e +1). (A81)

Rearranging the above equations yields the equation and the condition of Proposition 3.1. This implies
that Equation (14) is a candidate for a function with the aggregation property.

(Proof for the second statement)

Similar to Proposition 3.3, it is enough to show the SAP of Equation (14) holds. The SAP of the first
four terms in the equation is obvious. Proofs for the 5th and 6th terms in this proposition are similar to
those of the 10th and 11th terms in Proposition 3.1, respectively.

|

Appendix 2
Proof for Proposition 4.2

Let us set S; = Si¢ + aSo; and X; = (th, .. ,Mt([‘_l).,O) with Mt(l) =1y, (St). Then, according to
Fukasawa and Matsushita (2021),

N
E, [ZB,‘ (X, — thl)} = BBy (X7 — X,0)] = £2(Sr). (A82)
=1

According to Equation (18), Mt(l) is decomposed to Zézoak

RS

2 ) MO for pI-H0) _
k1 (S1,75 S2.7). In other words, the right hand side of Equation (A82) can be represented as

(L
S ( L >°m,k<sl,f, Sor). (A83)
k=0

For convenience, we denote the summand of the left hand side of Equation (A82) as B (AX). By the
definition of By, we can arrange it as follows.

aL L-1 (-)ui aL L-1 i ) 7 ” --)ui
B (AX) = — AMY— =— AMY ) —
L(AX) uk &p ; M 7! 5 duk &P pry jzod j 7!

aL L-1 G O)Mio L-1 ) (_ ll)Mil y
A AM Z,O—'-i—aZzlAM“ ’ l,l—'—i-O(a)
. I !

ip=1

2 L1 i
=— (exp( AM (10‘0)?—'
u = 1p!

= B (AM"0, ..., AM 1), 0)

u=0

u=0

(A84)

u=0




Because ais arbitrary, the coefficient of a of the left hand side of Equation (A82) is equal to the coefficient  (Geometric and

of a of the right hand side of Equation (A82). Therefore, by Equations (A82), (A83) and (A84), we have arithmetic
N L-1
L-1 - 4 comoments
%, 11(S11, Sor) = By {; 2 (il B 1)AM< ) (AM(LO)’ AMRO .. AM® ,0))} .
-
(A85)
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