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Abstract
Purpose – This paper aims to examine the time it would take to provide medical prophylaxis for a large
urban population in the wake of an airborne anthrax attack and the effect that various parameters have on the
total logistical time.
Design/methodology/approach – A mathematical model that evaluates key parameters and suggests
alternatives for improvement is formulated. The objective of the model is to minimize the total logistical time
required for prophylaxis by balancing three cycles as follows: the loading cycle, the shipping cycle and the
service cycle.
Findings – Applying the model to two representative cases reveals the effect of various parameters on the
process. For example, the number of distribution centers and the number of servers in each center are key
parameters, whereas the number of central depots and the local shippingmethod is less important.
Research limitations/implications – Various psychological factors such as mass panic are not
included in themodel.
Originality/value – There are few papers analyzing the logistical response to an anthrax attack, and most
focus mainly on the strategic level. The study deals with the tactical logistical level. The authors focus on the
distribution process of prophylaxis and other medical supplies during the crisis, analyze it and identify the
parameters that influence the time between the detection of the attack and the provision of effective medical
treatment to the exposed population.

Keywords Supply chain, Bioterrorism, Flexibility versus availability, Medical response planning,
Anthrax

Paper type Research paper

Introduction
The danger posed by biological terrorism, particularly the use of anthrax was dramatically
demonstrated in the fall of 2001 when letters containing dry anthrax spores were sent
through the US mail system, infecting 22 individuals and leading to five deaths (Inglesby
et al., 2002). While considerable attention has been paid to issues such as the dispersal of
anthrax plumes, the number of people expected to be infected by these plumes and the need
for a rapid medical response, less attention has been paid to the tactical logistical
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arrangements required to provide a rapid medical response to such an attack (Brookmeyer
et al., 2003; Craft et al., 2005; Hupert et al., 2007; Hupert et al., 2009; Wein et al., 2003).

This paper presents a mathematical model to assess the efficacy of various logistical
options based on the number of medical distribution centers, the arrangements for
processing individuals at each site including the number of stations set up for triage,
medical examinations and the dispensing of drugs and the number of medical personnel
available to staff these stations for a given size urban area. We will examine the optimal
medical distribution system as a function of the number of people who require treatment in
the wake of a bioterrorism event. We will consider both the size of the exposed population
and the number of individuals needing preventive measures, even if they were not exposed.

All, biological pathogens incubate for a period of days to weeks in their hosts. This fact
gives rise to the possibility that an effective defense against biological attacks can be
developed based on rapid medical intervention. Medical treatment of exposed individuals
can prevent the outbreak of disease, for those diseases for which medical treatment is
available if it is administered before an individual develops symptoms or early in the
symptomatic phase of the illness. For inhalation anthrax in humans, the incubation period is
estimated to be between one and six days, which is relatively short compared to many other
biological agents (Wilde, 1998; Wilkening, 2008). However, the incubation period may be
much longer (up to approximately 40 days), if a significant fraction of the population is
exposed to low doses of the disease, as will likely be the case because most disease
incubation periods are dose-dependent (Franz et al., 1997). For inhalation anthrax, treatment
for 60 days, and possibly longer with antibiotics (ciprofloxacin, doxycycline or penicillin;
possibly in combination) and other antimicrobial drugs, perhaps, followed by vaccination,
should prevent the outbreak of disease in a large percentage of the exposed population
(Hupert et al., 2009; Wilde, 1998). In fact, much medical personnel assumes that the efficacy
of antibiotics can approach 100 per cent, if the treatment begins soon enough.

The fact that anthrax is a non-contagious agent makes it much easier to treat because the
disease cannot spread from person to person. This fact makes it much easier to create
“points of dispensing” (PODs) for distributing antibiotics because one does not have to
worry about quarantine procedures or contact tracing to uncover secondary exposures from
infected individuals. Only the population in the area exposed to the anthrax plume would
need to be treated, along with any other individuals concerned about having been exposed
(whether these fears are valid or not).

The most important factor in post-attack medical intervention is the speed with which
treatment can be delivered. Reaching a very high percentage of the exposed population is
the next most important factor. Finally, the efficacy of intensive hospital care for those
individuals who do become ill is also important. However, the number of people seeking
intensive medical care depends greatly on the effectiveness of the first two factors. Indeed, a
medical response strategy that relies heavily on hospital care is certainly less preferable
because of its implications.

The ability to treat exposed individuals before they become symptomatic depends on the
time delay between the initial release and the point at which the authorities recognize that an
attack has occurred (detection time) and the speed with which medical treatment can be
delivered to the exposed population. This speed depends, in turn, on three main factors as
follows. The first factor is how long it takes to airlift medical supplies from a central location
to local staging sites at airports in the vicinity of the exposed population. The second factor
is the speed with which these supplies can be distributed to local PODs. The third factor is
the time it takes to process people at these PODs.
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Literature review
Models that deal with locating facilities and allocating resources to these facilities exist in
both the civilian and military contexts. In the civilian context, the focus is typically on long-
term considerations of supply chain management. The benefits of choosing a certain facility
are assessed mainly by its long-term operating costs and benefits, not by the initial setup
costs, which typically are short-term. This issue has been analyzed extensively in many
fields – from warehouses and depots through power stations up to optimal locations of
charging stations for electric cars (Barz, Buer and Haasis, 2016; Blelloch and Tangwongsan,
2010; Canel and Khumawala, 2001; Cui, Zhao and Zhang, 2018; Gourdin et al., 2000; Heyns
and van Vuuren, 2018; Love et al., 1988; Luo and Yang, 2016; Ravi and Sinha, 2006; Zhang
et al., 2018).

In the military context, the classical dilemma involved in deciding on the structure and
location of logistic resources for operational forces is flexibility versus availability. More
flexibility is achieved when logistic resources are concentrated at higher hierarchal levels
and allocated down to lower levels according to developing circumstances. The allocation
process takes time because of physical obstacles such as distance and conceptual obstacles
such as missing, partial or delayed information. Thus, supplies may be less available when
they are most needed. Greater availability is achieved when resources are decentralized
among lower hierarchical levels in advance. Such a strategy enables the commanders to deal
with uncertainty under changing circumstances, but at the cost of inefficient use and
increased expense (Badea and Petrisor, 2012; Davids et al., 2013; Gallasch et al., 2008; Gamez,
2015; John and Schultz, 1991; Johnson and Coryell, 2016; Kovács and Tatham, 2009; Kress,
2016; Mendershausen, 1958).

In the situations described above, the parameters and schedules are known or can be
estimated. Thus, the number and location of the supply depots can be decided and stocked
in advance. However, in the event of an anthrax attack, the situation is almost entirely
different. It involves immediate, short-term considerations, which are the only ones that are
relevant in this case. Responding to a bioterrorist attack is a one-time operation executed
under emergency circumstances, strict time limitations and a high degree of uncertainty.
The defender tries to protect civilians within boundaries that are either fuzzy or inexistent,
while the timing of the attack is also vague.

Logistic preparations for this situation can be categorized into three levels as follows.
First, at the strategic level, planners must organize, train and equip the forces that will have
to cope with a bioterrorist attack. Second, at the operational level, the requirements
associated with various biological attack scenarios including the supplies needed and the
protocols for responding to possible situations are addressed. Third, at the tactical level, the
process itself – distributing the medications, setting up and operating the PODs, and
treating infected people – is carried out.

There is extensive discussion in the literature of these three logistic levels in the context
of humanitarian responses to disasters (Leiras et al., 2014 for a literature review, as well as
Franke et al., 2011; Rackham and Kelly, 2018; Wang et al., 2015). On the other hand, studies
that discuss bioterror events are much fewer and usually focus only on the first two levels.
These studies use various models that analyze the preferred response (Caunhye and Nie,
2018; Perry et al., 2018), estimate the number of deaths and the capacities of hospitals (Stone
et al., 2018) or analyze vaccination policies in the case of a smallpox outbreak (Bozzette et al.,
2003; Wanying et al., 2016). There are even fewer papers that analyze the logistic response to
an anthrax attack. Wanying et al. (2016) propose a detailed mathematical model for this
challenge that considers the dynamics of the disease, assuming the number of distribution
centers and their capacities are given in advance.
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Our study deals with the tactical logistic level. We do not examine the detection problem,
information flow or the efforts after the attack to replenish stockpiles. Instead, we focus on
the process of distributing medical supplies during the crisis, analyze it and point out the
parameters that influence the time interval between the detection of the attack and the
effective medical treatment of the exposed population. While we are aware that no model
can represent the real world adequately, we use our model to demonstrate the tension
between flexibility and availability that exists, as well as the tension between centralization
and decentralization that should be considered when planning for disaster response.

Methodology
Medical treatment
For mass casualty settings, post-exposure treatment with oral antibiotics is the only
practical approach. Ciprofloxacin and doxycycline are the preferred antibiotics. For adults,
the recommended ciprofloxacin dose is 500mg twice daily and for doxycycline 200mg doses
twice daily. Simultaneous treatment with multiple antibiotics and antimicrobial drugs
following a bioterror incident is recommended to guard against drug resistant strains.
Antibiotic treatment of inhalation anthrax should continue for at least 60 days. If an anthrax
vaccine is available, post-exposure vaccination is recommended to guard against the
recurrence of the disease after antibiotics are discontinued. The strategy for treating other
population groups such as children and pregnant women is similar, with the necessary
adjustments in dosages.

The model’s rationale
The rationale behind the model is to supply antibiotic treatment as rapidly as possible to as
many people as possible because doing so is the key element for reducing the rate of
hospitalization and the number of casualties because of the attack. To achieve this goal, we
suggest the following strategy. First, supply a seven day dose of antibiotics to individuals
the first time they visit a POD. Second, complete the remaining 53-day treatment and
subsequent vaccination later during the first week. Our model focuses on the first stage
only, meaning analyzing the initial treatment distribution. We do not analyze other
important, but less urgent issues such as vaccination or medical support that requires
hospitalization.

The treatment distribution process begins at local airports near the contaminated area.
Large cargo containers of medical supplies that have been shipped from the central location
will be unloaded and rearranged into batches called push packs. These batches will be
distributed among the PODs and their contents will be supplied to individuals.

At the next stage, the process splits into many sub-processes that are executed in
parallel. Each sub-process contains three cyclical actions as follows: loading the medical
supplies, shipping them and providing service to the population. The loading cycle is
defined as the time required for loading batches of supplies on vehicles that will transport
them to all PODs. The shipping cycle is defined as the time required to ship these supplies to
the PODs. The service cycle is defined as the time required to distribute one batch of the
supplies (a batch contains antibiotics for many people).

Assuming that each POD starts operating as soon as it receives the first batch and that
cycles repeat until the entire population receives its initial dose of antibiotics or until
supplies run out, the course of the process is likely to behave as demonstrated in Figure 1.

Each of the three cycles is executed using relevant resources and measured by the time
required to complete one cycle. Loading uses forklifts and light trucks. Shipping uses the
road infrastructure. Service uses features of the servers. We refer to these resources as the
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independent (decision) variables. Note that there are two more types of decision variables
that are common to all three actions as follows: the number of PODs operating and their
locations.

Intuitively, it may seem better to open as many centers as possible to reduce the number
of people being serviced at each center. This strategy has clear benefits for the population:
reducing lines and waiting times, reducing driving time to a nearby POD, preventing
congestion, and perhaps, even reducing the immediate psychological effects. Nevertheless,
before adopting this strategy, two aspects related to the tension between flexibility and
availability should be considered.

First, the strategic aspect needs to be taken into account. The more PODs that need to be
opened, the more infrastructure, equipment, supplies and personnel required. This approach
implies that more money and a larger budget must be spent on these preparations. Second,
the tactical aspect must be considered. Increasing the number of PODs also increases the
loading cycle times while reducing the service cycle, and vice versa. These opposing trends
are illustrated in Figure 2.

Themodel
This section describes the major concepts and variables in our model. A detailed
mathematical formulation is provided in Appendix 1.

Objective
The goal of the model is to minimize the logistic time. Logistic time is the duration of the
process demonstrated in Figure 1, namely, the time from the beginning of packages’
arranging until the end of the distributing of antibiotics (for seven day treatment). Note that
reducing the logistic time is equivalent to increasing the average treatment rate; thus,
minimizing the first is actually maximizing the other.

Figure 1.
Demonstration of the
logistic process
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Decision variables
The decision variables analyzed in themodel are:

� the means such as the forklifts used for unloading and re-arranging the push packs
at the local airport;

� the means of transport including surface vehicles such as transporters and trucks
and aerial vehicles such as helicopters;

� the number and location of the PODs; and
� the number of servers in each center and the service rates

Parameters
The parameters of the model are grouped to represent different aspects of the problem, as
follows:

Area characteristics
Airborne anthrax plumes can extend for long distances and contaminate several urban
areas, each with its own unique characteristics. Two parameters are used in the model to
characterize each region: its dimensions and population density. These parameters play a
role in optimizing the process.

Loading phase
We assume that the loading is performed using several forklifts, with each truck being
loaded by one forklift. The forklifts are identical, as are the trucks. The more forklifts used,
the shorter the loading cycle time. Nevertheless, the decrease is not linear but concave
because of mutual disruptions and stochastic elements that occur in all large-scale non-
automated processes.

The loading rate is dictated by the volume of the package rather than its weight. A
typical ciprofloxacin package for the seven-day treatment of 10,000 people is not very heavy.
As mentioned, a loading cycle is defined by loading one truck for each activity center. Thus,
the number of loading cycles is determined by dividing the volume of the supplies needed in

Figure 2.
Total logistic time as

a function of the
number of centers
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a center by the truck’s volume. To summarize, the parameters used in this phase are the
number of forklifts, the loading rates and the capacity of the truck.

Shipping cycle
Shipping supplies from the depot at the local airport to the PODs can be done by ground
(trucks or vans) or by air (helicopters). Generally, the transit time is the sum of three
components as follows: the amount of time from leaving the point of origin to entering a
freeway, the time on the freeway and the time from leaving the freeway until reaching the
destination. The first and third components are short in distance but performed at low speed
and under restricted conditions, whereas the second part is relatively long distance but
typically done at higher speed, depending on traffic conditions. The same elements apply
when analyzing air transportation with the components involved is taking off, flying and
landing.

For ground transportation, we assume that the first and the third legs take 15-20min.
The duration of the second leg depends on distance and road conditions. Road conditions are
characterized by two parameters, each with three levels. The first parameter is road quality,
which can be good, moderate or poor. The second parameter is traffic flow, which can be
free, constrained or jammed.

Service phase
We assume that centers operating in a specific region are similar in that they serve
approximately the same number of people and have approximately the same number of
servers. The service procedure is standard: there are several servers who supply antibiotics
to people who come to the center. Each patient is treated by one server (the phrase “one
server” is generic and can refer to a group of personnel that is required to serve one patient).
The features of the servers are identical and so are the features of the people being served.

The service cycle time is determined bymultiplying the aggregate service rate by the size
of the batch, meaning the number of doses on a truck. If the result is greater than the loading
cycle time, new supplies will arrive before all of the current supplies are distributed. In that
case, the service phase is executed continuously. However, if the service cycle time is shorter
than the loading cycle time, there will be idle periods between the successive arrivals of the
trucks. Figure 1 illustrates this scenario. The service in center No. 1 goes on continuously
and an inventory of medical supplies accumulates, whereas in center No. 2 there are idle
times while waiting for supplies to arrive. Although one might think that the ideal situation
occurs when the service cycle time does not exceed the loading cycle time, in the current
situation the opposite is true. Continuous service prevents panic and stress among waiting
patients, who may interpret the pause in service as being caused by a shortage of medical
supplies. To summarize, the parameters in the service phase are the rate of service and the
number of servers or their density relative to the population.

In next sections, we assess the model using two test cases. The parameters of the first
example are virtual, whereas some parameters of the second example are taken from the real
world.

Example 1: a virtual demonstration of the model
Basic data
The contaminated area is 15 km downwind with a 610 km crosswind. The population
density is 1,000 people/km2. The loading rate is 5min per 1 m3. The service time for the
distribution of the antibiotic is assumed to be 5min per person, and a single server operates
each POD. A forklift is used to organize medical packages and load them on light trucks,
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each with a 7 m3 capacity. For ground transportation, we assume that the average speed on
the freeways is 70 km/h and the first and third legs of the trip take 15-20min each.

Results
The loading time, service time and the total logistic time as a function of the number of
centers are shown in Figure 3. Providing one server per center leads to a minimal value of
97 h to complete the logistic process and is achieved by setting up and operating 543 centers.

Two interesting facts emerge from this simple example. The first is the amount of time
involved in loading and shipping the medicine. This time increases steeply when only a few
centers are operating, remains constant as long as a few tens of centers are operating and
increases linearly with larger numbers of centers. The explanation for this phenomenon is
simple. When only a few centers exist, each truck is filled up and more than one cycle is
required. Thus, the loading cycle is the number of centers multiplied by the time required to
load the trucks. When many centers are operating (more than 50, in this example), the total
supply volume for each center does not exceed 1 m3. Therefore, only one cycle is required.
As a result, the loading cycle is the number of centers multiplied by the minimal loading
constant. The in-between case occurs when the volume loaded on each truck is more than
the minimal volume but less than its capacity. In this case, the loading cycle is independent
of the number of centers but equals approximately the total volume of the supply required to
treat all of the exposed population divided by the loading rate.

The second fact is the robust pattern of the total logistic function around the optimum.
Adding or subtracting 100 centers (18 per cent) changes the optimum logistic time by less
than 5 per cent.

Extension
According to the optimal results of the model, the density of servers should be equal to
1.81 � 10�3 (543 servers divided by the total population in the contaminated area). We ran

Figure 3.
Phases and total time
required for logistics
as a function of the
number of PODs –

one server per center
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the model again, this time without specifying the number of servers per center in advance.
Instead, we used the calculated density of the servers. This additional degree of freedom
improved the results substantially. The optimal total logistic time declined from 97 to 62 h
(35 per cent), with only 45 centers operating, each with 12 or 13 servers.

The total time required for the logistics, illustrated in Figure 4, exhibits a saw-tooth
structure. This outcome occurs because, for any given number of centers, the duration of the
service phase is derived from the most restricted centers, which, in our model are those that
have a minimal number of servers. Initially, servers for new centers are allocated from those
that have a number of servers above the minimum. As fewer people are served in each
center, the service time is reduced and so is the total logistics time. This outcome repeats
until a threshold point is crossed, and the number of servers in one or more centers falls
below the previous minimum, causing the service time (and the total logistics time derived
from it) to increase sharply.

This saw-tooth phenomenon suggests that searching for the optimum option is
complicated because there are numerous local optimum points as opposed to one unique
optimum solution. In real-life cases, the situation can become even more complex, as
suggested in the next example.

Example 2: An anthrax aerosol attack in a major city in the USA
Basic data
The characteristics of the area in this example come from Wein et al. (2003). The
contaminated area is 200 km downwind with a 618 km crosswind. The closest community
30 km downwind is an urban area with a population density of 10,000 people/km2, and the
furthest community downwind is a rural area with a population density of 100 people/km2.
The service time for antibiotic distribution is between 0.12 (two shifts) and 0.18 (three shifts)
per min. We assume that 10 forklifts are used to load the medical supplies on light trucks,
each with a 7 m3 capacity. Based on empirical studies that investigate the changes in
average speed along freeways during the day, we use transport speeds of 50, 35 and 20mph
for free, constrained and jammed traffic, respectively. We also assume that the reduction in

Figure 4.
Phases and total
logistics time as a
function of the
number of PODswith
a constant number of
servers

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450 500 550

Number of Centers

e
mi

T

Loading & shipping Service Total logistics

JDAL
3,2

160



average speed caused by road quality is 25 and 50 per cent for moderate and poor roadways,
respectively.

Results
When both the number of servers and the number of centers are unlimited, the
minimum time to complete the process is around 20 h for 200 servers per 1,000 people,
operating 39 and 75 centers in the urban and rural regions, respectively. This outcome
implies a total of approximately 2.4 � 106 servers, which is an impractical result.
However, the total distribution time has a very broad minimum, suggesting that the
number of servers can be reduced substantially without increasing the distribution
time too much. Figure 5 shows that the density of the servers can be reduced to
approximately 20-30 per 1,000 people without altering the total service time by more
than 5-10 h.

When using more realistic server densities, we obtain the results shown in Figure 6.
As the figure shows, the optimum number of PODs is independent of the density of the
servers. However, the total logistics time drops monotonically as the server density
increases. Table I presents the results for medical personnel with a density of 1.21 �
10�3 (Wein et al., 2003).

For this density of servers, (1.21 � 10�3) changing the number of centers has only a
minor effect on the total logistic time (Figure 7). Any combination of centers in the ranges
[232, 1,866] in the urban region and [14, 148] or [156, 185] in the rural region will lead to a
total logistic time that is less than 140 h.

Figure 5.
The logistics time
and the number of

servers as a function
of density of servers
and the number of
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Sensitivity analysis
We analyzed the influence of several parameters on the results as follows: service rate,
number of forklifts, number of central depots, road quality and traffic conditions. The
results are summarized in Table II. The total logistic time is affected mainly by the service
rate. The number of forklifts has a relatively minor effect. Opening two central depots
instead of one have a moderate effect on the results. Worsening road quality and traffic
conditions have the same influence, although in the opposite direction. As mentioned above,
the optimal number of centers is insensitive to any of these changes.

The efficacy of the medical intervention is maximized when the exposed population can
receive treatment prior to symptoms appearing in it. Symptoms will likely begin to show within
48h after exposure. Therefore, if antibiotic treatment can occur within 48h after exposure to
inhaled anthrax, the efficacy of medical intervention should be quite high. As shown above, the
key parameters that affect service time are the density of the servers and the service rate.

Different combinations of these two parameters that meet the 48 h criterion are shown in
Figure 8.

Thus, if one has 1.21 servers for every 1,000 people, the service rate would have to be 0.71
people/min to service the entire population within 48 h. To accomplish this goal, the medical
personnel would have to reduce the average service time to 1.4min. If the service time

Table I.
Results for a fixed
density of servers
(1.21� 10�3)

Region No. of centers No. of cycles No. of servers per center

Urban 1,451 1 9*
Rural 185 1 4**
Total 1,636 *** 13,808

Notes: Time to complete the process is estimated at 125 h (5 days). * A few centers have 10 servers. ** A
few centers have 5 servers. *** 1,636 trucks needed, less than 2 m3 of each truck are used

Figure 6.
Amount of time to
process people and
number of centers as
a function of the
density of the servers
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remained unchanged at 0.14 people/min, then the density of the servers should be 5 per 1,000
people to meet the 48 h criterion. This is four times the original density (1.21). In peacetime,
only physicians can prescribe antibiotics and only medical or pharmaceutical personnel can
administer them. However, in the aftermath of a bioterrorism event, these constraints may
be relaxed to accelerate the antibiotic distribution process. One way of doing so is by using
volunteers who do not have formal medical education but have received short basic training.

Such non-medical servers could provide antibiotics to people who, on the basis of an
initial triage, do not have a medical history that would require more careful treatment.
Included in this category are patients who are in good health, do not have any allergies to
antibiotics and are not immune compromised. These individuals can be serviced in an
“express lane” with only a brief explanation of how to use the antibiotics and what adverse
reactions to watch for. Further explanations can be provided through the media, online and

Table II.
Summary of

sensitivity analysis

Parameter/variable Change
Effect on total
logistic time (%)

No. of PODs
required

Basic case – 125 1,636
Service rate Improved by 20% 106 (�15%) 1,600

Deteriorated by 20% 145 (þ16%) 1,636
Number of forklifts Improved by 20% 123 (�2%) 1,818

Deteriorated by 20% 129 (þ3%) 1,600
Number of central depots 2 instead of 1 118 (�6%) 1,817
Road quality and traffic conditions Poor and jammed instead of

well-maintained and free-
flowing

134 (þ7) 1,600

Figure 7.
The process time as a

function of the
number of centers in
the urban region (the
number of centers in
the rural area is 185)
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through cell phones. People with more complex medical conditions will require professional
servers such as paramedics, physician assistants, nurses or doctors. Moreover, the
processing time for the special cases will be longer because of the need for more detailed
medical histories. Thus, there are at least two service rates: a “fast” rate for medically simple
cases and a “slow” rate for medically complex cases. Knowing the proportion of complex
cases in the population and the ratio of the fast rate to the average rate allows one to
determine the acceptable slow service rate (Appendix 2 for mathematical details).

Figure 9 illustrates the trade-off between the fast and slow service rates that will give the
same value of the average service rate for different fractions of special cases in the exposed
population: 0.1, 0.25 and 0.5. In this figure, the fast and slow service rates are measured in
terms of the ratio with the average service rate. For example, if the fraction of special cases is
0.25 and the fast to average service rate ratio is 2, then the slow service rate can be reduced
to 0.2 times the average rate without increasing the total logistic time.

Discussion and conclusions
This paper examines the time it would take to provide medical treatment for a large urban
population in the wake of an airborne anthrax release, and the effect that various parameters
have on the total time needed for the logistics to respond to this attack. While our model
provides a means for determining the optimal service time, it often requires an unrealistic
number of PODs and servers. Fortunately, because of its robustness, near optimal service
times can be obtained with more realistic numbers for these parameters. Other variables
such as the number of central depots, the local shipping method and the number of forklifts
for loading supplies at the local airport have only minor effects on the results. The shipping
can be done with small trucks, which are used extensively in everyday life.

Figure 8.
Combinations of
server density and
service rate that can
reduce the total
logistics time to 48 h
(points that fall below
the graph stand for
total logistics time
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The main bottleneck that affects the length of the process is the service rate. Thus, improving
its efficiency is important. Several methods can be applied to do so. First, the authorities can
provide information to the public using mass media together with tailored messages such as
via cell phones or social media before and during their waiting in lines at the antibiotic
distribution centers. The processing time can also be reduced significantly if the number of
servers increases dramatically. When there is one server per individual, this means distributing
the supplies prior to the attack. However, such a policy is not recommended because it has
several serious drawbacks. The pre-distributed medications may have exceeded their shelf life.
In addition, people may be tempted to use the antibiotics for other purposes, especially during
flu season, raising the specter of increased antibiotic-resistant diseases.

The main focus of this model is to determine the number of PODs and the service rates
required to provide rapid medical treatment to an exposed population in the wake of a
bioterrorist event, given various uncertainties. However, before these results can be
translated into real medical response plans, one must make sure that social or psychological
factors such as mass panic and road congestion because of people fleeing the scene of the
attack will not confound the smooth operation of the PODs discussed in this paper. Thus,
securing both medical personnel and patients is very important, as is the dissemination of
clear and accurate information to minimize panic or non-compliance with medical protocols.
To some extent, these considerations can be partially reflected in the values of the
parameters used in this analysis. This study opens up avenues for considering short-term
costs when developing facility models. This idea will be developed in future research.
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Appendix 1. Mathematical formulations
General
Let xj� Exp(l ) j = 1.m i.i.d.

Then,

Min
j

xjð Þ�Exp mlð Þ

Thus, if there are m identical independent servers whose rate of providing service is distributed
Exp (l ) and n customers, the mean time until all customers are served is given by equation (1):

E Tð Þ ¼ 1
l

m n�mþ 1ð Þ þ
Xm�1

k¼1

1
k

" #
(1)

Parameters
M = Number of zones in the contaminated area;
u i = Population density in zone i;
Ai = Size of zone i (km2);
V = Truck capacity;
k = Number of forklifts;
y = 1-cubic meter loading rate;
r = Servers’ density;
m i = Service rate for antibiotics in zone i; and
v = Average volume of one person’s antibiotic dose.

Decision variables
Ni

s = Number of PODs (= number of trucks in a cycle) in zone i.

Functions
TTotal = Time required to complete the process;
Ti
L = One cycle’s loading time referring to zone i;

Ti
D = Time required to transfer material from the central depot to the furthest POD in zone i;

Ti
S = Service time of a batch cycle in zone i;

Ni
c = Number of cycles in zone i;

CL = Loading delay function;
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CS = Service delay function; and
Si = Number of servers in a POD in zone i.

Then:

TTotal ¼ Max
i

Ti
L þ Ti

D þ Ni
c � 1

� �
�Max Ti

L;T
i
S

� �
þ Ti

S

� �
(2)

Explanation: the process contains sub-processes that are executed in parallel for each POD – loading,
transferring and servicing. The duration of each sub-process is the time to complete the first cycle of
loading and transferring, plus the time to complete the last cycle of servicing plus the time to
complete (Ni

c � 1) times the loading cycle or servicing cycle, which lay between them. Because these
cycles in the sub-process are executed in parallel, we add only the longer one. The whole process is
completed when the longest of all sub-process is completed.

Ti
L ¼

X
i
Min V ;Max 1 ; v � u iAi

Ni
s

� �h i
M � y �

Max
X

i
Ni
s � k; 0

� �
k

þ 1
Ni
c

Xk�1

1

1
j

2
4

3
5þ CL

(3)

Explanation: the average loading time of the i-th POD is an implementation of equation (1) in our
model: the multiplication of two expressions. The first is the volume that is loaded on a truck. The
second is the expected loading time when k trucks are loaded at the same time. Note that both
expressions are dependent on Ni

s, which is the decision variable. Ni
c is also dependent on Ni

s and its
formulation is presented in equation (5). Cs is added to express the extra delay because of mutual
interruptions. Its formulation is presented in equation (7).

Ti
S ¼

Min V
� ; u iAi

Ni
s

� �
m i �

Max Min V
� ; u iAi

Ni
s

� �
� Si ; 0

h i
Si þ 1

Ni
c

Xs�1

1

1
j

8<
:

9=
;þ Ci

S

(4)

Explanation: the average servicing time of the i-th POD is also an implementation of equation (1) in
our model: the multiplication of two expressions. The first is the estimated service time of a batch
loaded on the truck for one server. The second is the number of servers that are operating at the same
time. Note that both expressions are dependent on Ni

s, which is the decision variable. Cs is added to
express the extra delay because of mutual interruptions. Its formulation is presented in equation (7).

Ni
c ¼

1
V

� v � u
iAi

Ni
s

(5)

Explanation: the number of cycles is computed as the total volume to be loaded for the i-th POD
divided by the truck’s capacity. The volume to be loaded depends on the number of PODs.

CL ¼ 2
log

X
i
N i
s�Ni

c

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
Ni
s � Ni

c

k

s
(6)
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Ci
S ¼ 2

log u iAi

Ni
s

� �
�

ffiffiffiffiffiffiffiffiffi
u iAi

SiNi
s

s
(7)

Explanation: the delays are affected by the number of PODs operating, and by the number of forklifts
and servers used. These formulas were chosen to be non-linear concave functions.

Si ¼ r � u
iAi

Ni
s

(8)

Explanation: the number of servers in each POD is calculated as the density of the servers multiplied
by the size of the population in the area.

Appendix 2. Define
m = Average service rate;
k1 = Ratio between fast service rate and average service rate (k1 � 1);
k2 = Ratio between slow service rate and average service rate (k2# 1); and
a = Proportion of complex cases in the population (a# 1).

An approximation of the average service time is as follows:

1� a

k1m
þ a

k2m
¼ 1

m
(9)

After some algebraic manipulations, we get:

a ¼ k2 k1 � 1ð Þ
k1 � k2

or

k2 ¼ ak1
k1 � 1� að Þ
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