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Abstract

Purpose — Transaction cost becomes significant when one holds many securities in a large portfolio where
capital allocations are frequently rebalanced due to variations in non-stationary statistical characteristics of
the asset returns. The purpose of this paper is to employ a sparsing method to sparse the eigenportfolios, so
that the transaction cost can be reduced and without any loss of its performance.
Design/methodology/approach — In this paper, the authors have designed pdf-optimized mid-tread
Lloyd-Max quantizers based on the distribution of each eigenportfolio, and then employed them to sparse the
eigenportfolios, so those small size orders may usually be ignored (sparsed), as the result, the trading costs
have been reduced.

Findings — The authors find that the sparsing technique addressed in this paper is methodic, easy to implement
for large size portfolios and it offers significant reduction in transaction cost without any loss of performance.
Originality/value — In this paper, the authors investigated the performance the sparsed eigenportfolios of
stock returns in S&P500 Index. It is shown that the sparsing method is simple to implement and it provides
high levels of sparsity without causing PNL loss. Therefore, transaction cost of managing a large size
portfolio is reduced by employing such an efficient sparsity method.

Keywords Transaction cost, Principal component analysis (PCA), Sparse matrix, Eigenportfolio,
Karhunen-Loeve transform (KLT), Midtread (zero-zone) pdf-optimized Lloyd-Max quantizer, Eigen decomposition

Paper type Research paper

1. Introduction
In order to reduce volatility, large size portfolios with built-in diversity are commonly used
in practice. On the other hand, the portfolio maintenance (re-balancing) becomes more costly
when portfolio size is large, e.g. a few hundred asset portfolio. Therefore, calculated small
adjustments of some asset positions are judiciously ignored in the implementation during
the periodic re-balancing process by employing a method to sparse large size portfolios.
A sparsing technique for Markowitz (mean-variance) portfolio (Markowitz, 1959) was
proposed in Brodie ef @l (2008), a penalty (regularization term) which is proportional by
employing L1-norm based lasso regression (Tibshirani, 1996). In this paper, we propose a
method to design sparse eigenportfolios and present its merit by using market data.
Eigendecomposition, also called spectral decomposition, principal component analysis or
Karhunen-Loeve Transform (KLT), is the factorization of a diagonalizable matrix in terms of its
eigenvalues and eigenvectors. It has been a popular method for multivariate data analysis and
dimension reduction problems where commonly the matrix of interest is a correlation or
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covariance matrix of a random vector process (Hotelling, 1933; Karhunen, 1947; Loeve, 1955;
Wilkinson, 1965; Akansu and Haddad, 1992). The proper interpretation of eigenvectors
(principal components) and eigenvalues (weight of principal components) for the given
covariance (or correlation) matrix and application is a major aspect of eigenanalysis. In finance,
this analysis method is employed to design a set of eigenportfolios for a group of stocks in a
basket where eigenportfolio returns are perfectly pairwise decorrelated. Moreover, they are
statistically independent with the assumption of jointly Gaussian stock returns. Small
components of an eigenvector increase the transaction cost in generation and maintenance
(rebalancing) of the relevant eigenportfolio due to the tracking of statistical variations in time
(Akansu and Torun, 2015; Torun et al, 2011). The use of eigenvector components (loading
coefficients) in such an application makes sparsity (cardinality reduction of a vector space) an
important consideration. In contrast, the uneven distribution of signal energy among
eigenvectors’ spectra (as reflected in eigenvalues or eigencoefficient variances) leads to
dimension reduction that is inherent in subspace methods. This characteristic is utilized in
image and video compression through transform coding techniques (Jayant and Noll, 1984;
Akansu and Haddad, 1992).

The dimension reduction and sparsity of basis functions (eigenvectors) are important
properties of orthonormal transforms to emphasize frequency and time domain specifics of
a signal vector. These built-in time and frequency domain properties of signals as
emphasized in a subspace are independently utilized in most applications. The simultaneous
interpretation of Eigen coefficients and eigenvector components in subspace methods leads
to the time-frequency representation of signal energy. We use it in this paper.

This work is a continuation of the subspace sparsing framework proposed in Yilmaz and
Akansu (2015). It is based on the rate-distortion theory and employs zero-zone (mid-tread)
pdf-optimized (Lloyd-Max) quantizer created for the histogram of an eigenvector or
eigenmatrix and the desired level of sparsity in the subspace (Max, 1960; Lloyd, 1982,
Akansu and Haddad, 1992). We focus on sparsing the eigenportfolios of stocks in S&P500
index by using this method and their resulting performance.

The method to sparse subspace is presented in Section 2. Section 3 focuses on sparsity of
eigenportfolios. The quantization of eigenvector components or eigenmatrix elements of such
eigensubspace is described. The impact of sparsity on PNL performance of the eigenportfolios
is displayed. The conclusions are presented in the following section of the paper.

2. Sparsity in subspace methods
The energy compaction that is achieved through the unevenness of transform coefficient
variances, and their pairwise correlations are the performance metrics derived from the rate-
distortion theory to evaluate orthogonal sets (orthogonal subspace methods). The energy
compaction measure emphasizes the spectral (frequency domain) features of a subspace
representation and the foundation of transform coding, that is the industry standard for
image and video compression standards (Jayant and Noll, 1984; Akansu and Haddad, 1992).
In contrast, sparse representation aims to replace insignificant components of the basis
vectors, cardinality reduction, that define an orthogonal subspace. Hence, it highlights the
signal domain (time domain) characteristics of subspace representation. We investigate both
the time and the frequency domain sparsities of subspace methods where both the explained
variance and sparsity are quantified.

Herein, we revisit the mathematical definitions of orthogonal subspace representation.
Let x be an N x 1 input signal vector:

x = [x0,%1, ..., Xy-1]"- (1)
0 be an N x 1 coefficient vector:
0 = [00,01, ..., 00 11" @
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And, let @ be an N x N orthogonal transform matrix:

= g5, ¢ Bh - ®
where ¢y, is an N x 1 vector, and ® matrix satisfies the orthogonality properties:
o0 = 0T =1, @)

1 is the identity matrix of size N X N. Then, we define the forward transform (projection) of
signal vector x onto orthogonal subspace:

0 = dx, ©)
and its inverse transform (signal representation by basis vectors) as:
x = (®)7'o = @70, ©6)

to reconstruct the original signal vector x.

Most of the sparse representation techniques reported in the literature are based on
various subspace optimization methods where sparsity is imposed in the design. More
recently, the quantization of basis vector components of a subspace was experimented as a
more efficient alternative to the existing sparsing approaches. The following subsections
focus on the quantization of orthogonal Eigen subspace vectors and matrices that are used
as the capital allocation coefficients of the resulting eigenportfolios (Akansu and Haddad,
1992; Yilmaz and Akansu, 2015).

2.1 Quantization of subspace
We focus on the quantization of forward transform matrix (vectors) in this section. Then, its
quantized (sparsed) version rather than the original matrix is employed for signal
representation. The motivation for such vector sparsing (cardinality reduction) is to replace
insignificant vector components with zero. Hence, one may reduce computational and
implementation cost of orthogonal set based subspace applications spanning from image
compression to eigenportfolios.

We quantize orthogonal set (transform matrix) by using a quantizer Qg {-} (Yilmaz and
Akansu, 2015):

d = Qo{®}, @)
such that the error matrix of the quantized set is written as:

b = o—b. ®
It is noted that this quantization compromises the orthogonality property of the set. The
levels of non-orthogonality and the sparsity are coupled in this problem. Then the transform
coefficients for the quantized set are calculated as:

éFT = (i)X. (9)

Therefore, the quantization error embedded in transform coefficients due to the use of ®
rather than the (original) matrix @ is shown as:

éFT = G—QFT = Px—bx = (d)—(f))x = dx. 10)



Then, the reconstructed signal by using the original inverse transform matrix @' = ®" is
obtained as:

fpr = DT 0p7. 11)

The reconstruction error is given in the expression:

The MSE of coefficients is equal to the MSE of reconstructed signal due to the orthogonality
of the original set as:

E{xfr%pr} = E{(®%0r7) " (078p7) } = E{ 057007 8oy § = E{Bpr0pr ). (13
1

In summary:
B{xEr%pr} = E{Bpr0pr ) = E{xT®"dx}. (14)

One can easily exchange the roles of the forward and the inverse transform matrices for the
applications like eigenportfolio design where the sparsity of the representation (inverse) set
is desired.

2.2 pdf-optimized quantizer

We use Lloyd-Max quantizer that minimizes the quantization error in the mean square
sense. The pdf optimized quantizer is calculated iteratively as described in Max (1960) and
Lloyd (1982). The random input x has a pdf f{x) with zero-mean and unit variance, the end
values of N-level quantizer are x;, and x;, . 1, and ¥, represents all numbers fall into the kth
interval (bin) [xz, X5 + 1], where k=1, 2, ..., N, and x; = —co and x . 1 = 0. The quantization
error in MSE for such quantizer is calculated as:

X
N k+1

2= [ s (15
k=1 Y,
k
The Lloyd-Max quantizer design algorithm updates the intervals [x;, 4, . 1] and y.
iteratively, by satisfying two conditions (Max, 1960; Lloyd, 1982):

803

—=0k=23,...N,

axk

Oa?

24 =0r=123,..,N, (16)
Wy

which also implies that:

1
Xp = é(yk-i_yk—l);k = 25 35 "'5N5

Ly e (odx

Note that the noise variances of all bins are the same in a pdf-optimized quantizer.

k=1,2,3,..,N. 17)
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The rate-distortion theory based sparsity method was detailed in Yilmaz and Akansu
(2015), and it is used to generate sparse eigenportfolios in this study. We employ the
midtread (zero-zone) quantizer type to quantize each basis function (components of each
vector) or the entire basis set of a transform to achieve a sparse representation. It is noted
that only the center bin (zero-zone) of the mid-tread quantizer around zero is used in sparsity
applications. The size of this zero-zone is adjusted to achieve the desired level of sparsity.

3. Sparsity of eigenportfolios

The calculated eigenvectors of empirical correlation matrix may have components (capital
allocation coefficients) with small values. The maintenance of portfolios with large number
of assets becomes burdensome and costly. It is a common practice to avoid investing in
assets of a portfolio with small capital allocations in the overall investment (Brodie ef al,
2008; Akansu et al., 2016). A design framework to sparse portfolios was proposed in Yilmaz
and Akansu (2015), and we utilize it in this study.

The eigenportfolios are generated based on eigenvectors of empirical correlation matrix
obtained from past returns of a pre-selected basket of assets for a given time window. We
used the returns of stocks in S&P500 index for the period of December 1, 2015 to December
1, 2017 for various sparsity levels in order to validate the merit of the sparsity method.

There are 492 tickers of S&P500 index that continue to exist during that time period.
Therefore, we used their end of day (EOD) simple returns, r(z), to calculate the empirical
correlation matrix at time #, Rg(n), as follows (Akansu and Torun, 2012, 2015):

t(n) = [rsm)): k= 1,2, ..., 492, (18)

and, the resulting empirical correlation matrix Rx(#) is calculated as:

Re(n) = [E{x(r" (m)}] = [Rei0m)]

Rii(n)  Rip(m) ... Ry
_ 1:32,1(74) 1:32,2(74) : 1:32,492(74) , 19
Rygp1(n) Rygeo(n) ... Rugoaee(n)
where its elements are obtained as:
1 =1
Rualn) = E{rinon} = g5 > _ riCu=mynitn=m), 20)

and, R, {n) represents the pairwise empirical correlation of the kth and the /th stocks at time 7.
We used the time window of W = 60 days in this study. Note that the returns are normalized
to zero mean and unit variance, and Rg() is real, symmetric and positive definite matrix.
Then, the eigenmatrix Ag; 7 of Rg{() that satisfies the eigenmatrix decomposition property as
given below is obtained (Akansu and Haddad, 1992; Akansu and Torun, 2012; Yilmaz and
Akansu, 2015):

K

Re(n) = A 7AW AgLr(0) =Y = Jm)gp)py (), @1
k=1

where {4,(n), ¢»(n)} are eigenvalue-eigenvector (eigenportfolio) pairs.
Now, we focus on the elements of A r with small values. The histogram of the elements
of an eigenmatrix Ag; 7 is displayed in Figure 1.



Then, design a mid-tread (zero-zone) pdf-optimized quantizer for this histogram to
replace the small valued elements of Axz 7 by zero. We adjust the zero-zone of the quantizer
by simultaneously adding the neighboring pairs of intervals on both sides to achieve the
desired sparsity level. We only use the zero-zone of the quantizer for this application.

Each eigenvector may have different histogram, and one can design a separate quantizer
for every one of them in particular for portfolios with large number of assets.

We also investigate the explained variance (eigenvalue) of the eigenvectors ¢(#) in order
to identify significant ones and evaluate their eigenportfolio performance. The kth
eigenvalue at time 7, A,(n), is equivalent to the variance of the kth transform coefficients,
O'%, and calculated as {/,(n) = qﬁZ(n)RE(n)qbk(n)}Vk (Akansu and Haddad, 1992). Figure 2
illustrates the cumulative explained variance as a function of the number of eigenvalues for
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Figure 1.
Normalized histogram
of eigenmatrix
elements for empirical
correlation matrix of
end of day (EOD)
returns for 492 stocks
in S&P 500 index
with W = 60-day
measurement window
starting on December
1, 2015, ending on
February 26, 2016,
and widow shifts for
another 252 days,
starting from
February 26, 2016,
ending on February
24, 2017

Figure 2.
Cumulative explained
variances as a
function of the
number of
eigenvectors included
in representation

for different levels

of sparsity




JCMS
31

88

Figure 3.

Variance loss of first
25 eigenvectors
(principle components)
as a function of
sparsity level

various sparsity levels. Similarly, the explained variances (eigenvalues) of the sparsed

eigenvectors at time #, {(}k(n)}, are calculated as {1;(n) = (})Z(M)RE(M)ék(M)}Vk.

Note that first 59 out of 492 eigenvalues (eigenvectors or principle components)
explained 99 percent of the total variance (of the random vector process) in this experiment.
We designed a specific pdf-optimized quantizer for each one of the first 25 eigenvectors that
explain 80 percent of the total variance.

The relationship between the sparsity and the resulting variance loss for these 25
eigenvectors are displayed in Figure 3. The variance loss of the kth eigenvector due to the
sparsity is defined as:

N-1
E{VLn)} = zivz VLy(n), 22)
n=0

{VLk(n) - ( —jiZD x 100}Vk.

We assume $1 normalized investment in each eigenportfolio with long and short positions,
in general, and no transaction cost is considered in these experiments. Then, the Profit and
Loss (PNL) curve is calculated (Yilmaz and Akansu, 2016). It is observed from Figure 4 and
Table I that the sparse eigenportfolios with significant reduction in transaction cost perform
similar to the original eigenportfolios for the stocks of S&P500 index stocks.

where:

4. Conclusions

Portfolio managers and investors desire to have smaller number of positions to open and
rebalance. Therefore, one needs to develop a methodology to define a threshold where an
investment allocation is deemed insignificant. This problem becomes important for very large
size portfolios, (e.g. Russell 2000, VTI, VGTSX) and it can be formulated under the
rate-distortion theory and a solution by using the mid-tread (zero-zone) pdf-optimized
quantizer to sparse orthogonal subspaces was proposed in the literature. Note that the optimal
quantizers are tuned for different portfolios with desired sparsity levels. Usually, the execution
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related concerns, i.e. hard to find ticker, lot size and trading cost, are known in advance, and
implemented in the adjustment of the zero-zone pdf-optimized quantizer, accordingly. In this
paper, we investigated the performance of such quantizers to sparse eigenportfolios of stock
returns in S&P500 Index. It is shown that the method is simple to implement and it provides
high levels of sparsity without causing PNL loss. Therefore, transaction cost of maintaining a
large size portfolio is reduced by employing such an efficient sparsity method.
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