
Executing large-scale processes
in a blockchain

Mahalingam Ramkumar
Department of Computer Science and Engineering, Mississippi State University,

Starkville, Mississippi, USA

Abstract
Purpose – The purpose of this paper is to examine the blockchain as a trusted computing platform.
Understanding the strengths and limitations of this platform is essential to execute large-scale real-world
applications in blockchains.
Design/methodology/approach – This paper proposes several modifications to conventional blockchain
networks to improve the scale and scope of applications.
Findings – Simple modifications to cryptographic protocols for constructing blockchain ledgers, and digital
signatures for authentication of transactions, are sufficient to realize a scalable blockchain platform.
Originality/value – The original contributions of this paper are concrete steps to overcome limitations of
current blockchain networks.
Keywords Cryptography, Blockchain, Scalability, Transactions, Blockchain networks
Paper type Research paper

1. Introduction
A blockchain broadcast network (Bozic et al., 2016; Croman et al., 2016; Nakamoto, 2008;
Wood, 2014) is a mechanism for creating a distributed, tamper-proof, append-only ledger.
Every participant in the broadcast network maintains a copy, or some representation, of the
ledger. Ledger entries are made by consensus on the states of a process “executed” on the
blockchain.

As an example, in the Bitcoin (Nakamoto, 2008) process:

(1) Bitcoin transactions transfer Bitcoins from a wallet to one or more other wallets.

(2) Bitcoins created by “mining” are added to the miner’s wallet.

(3) Bitcoin process state is the unspent balance in each wallet.

The identity A of a Bitcoin wallet is a public key of an asymmetric digital signature scheme.
The possessor of the corresponding private key can initiate signed transactions to transfer
Bitcoins from her wallet to other wallets. For example, a Bitcoin transaction:

Ti ¼ ti;X ; x;Y ; y½ �A (1)

signed by A, and broadcast at time ti, is for transferring (from wallet A), x Bitcoins to wallet
X, and y Bitcoins to wallet Y.

The transaction Ti is deemed well-formed only if x + y ⩽ a, where a is the unspent
balance in wallet A before the transaction. Only well-formed transactions are added to the
Bitcoin-distributed ledger (ill-formed transactions are ignored). More specifically, a plurality
of well-formed transactions is added to a block, and such blocks are added to the ledger, to
create a “chain of blocks.”

Journal of Capital Markets Studies
Vol. 2 No. 2, 2018
pp. 106-120
Emerald Publishing Limited
2514-4774
DOI 10.1108/JCMS-05-2018-0020

Received 16 May 2018
Revised 16 May 2018
Accepted 1 September 2018

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/2514-4774.htm

© Mahalingam Ramkumar. Published in Journal of Capital Markets Studies. Published by Emerald
Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence.
Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial
and non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

106

JCMS
2,2

http://creativecommons.org/licences/by/4.0/legalcode

While the Bitcoin network is intended for a single fixed process, namely, tracking the
state of Bitcoin wallets, more recent blockchain networks like Ethereum (Wood, 2014)
are intended for running any number of flexible, software defined, processes.
Ethereum provides a JavaScript-like programming language for implementing functions
triggered by various types of transactions, along with a virtual machine for executing of
such functions.

1.1 Auditing the ledger
A blockchain network can be justifiably regarded as a universally trusted platform for
executing processes, as the trust is based solely on good cryptographic assumptions,
namely, the quantifiable preimage and/or collision-resistance strength of a cryptographic
hash function h(). Blockchain ledger entries are a record of progression of states of the
process. Protocols constructed using a standard cryptographic hash function h() make it
possible to create an open, distributed, immutable (for past entries), append-only ledger that
can be audited by anyone. In other words, the integrity guarantees regarding a process
executed on a blockchain network stem from the fact that anyone can reliably audit the
entire history of all process states.

However, the fact that anyone can audit a blockchain ledger does not imply that
everyone will. To address this issue, some participants are explicitly incentivised to do so.
In other words, blockchain participants can be seen as belonging to two broad categories:

(1) a small number of incentivised participants, who take an active part in making
ledger entries; and

(2) a much larger number (typically) of passive participants, who do not take part in the
process of making ledger entries, but can nevertheless audit the ledger, if they
choose to do so.

Typically, every participant in a blockchain network maintains a copy of the ledger.
Periodically, after a set of transactions have been processed, an incentivised user “makes a
motion” to add a block to the blockchain. Most often, such a motion passes, and every
participant updates their copy of the ledger. The reason that incentivised users do not make
motions to add blocks with ill-formed transactions is due to the fact that they have a stake in
the correctness of their ledger entries. Two common types of incentive mechanisms (Bentov
et al., 2014) include Proof-of-Stake (PoS) and Proof-of-Work (PoW).

In PoS-based (Kiayias et al., 2017) incentive systems, incentivised participants are
required to explicitly stake some amount on the correctness of their ledger entries. Any error
(deliberate or otherwise) will result in loss of stake.

In PoW schemes (Nakamoto, 2008), the stake is in the form of expensive energy
invested by incentivised participants (“miners” in Bitcoin) to solve a computationally
intensive puzzle. In general, the puzzle itself has nothing to do with the process executed
in the Blockchain. The incentive for miners to ensure correctness of entries is that a
miner’s expensive work may be rendered moot if they make an erroneous entry. More
specifically, in Bitcoin, solving the puzzle has two purposes: to gain the privilege of adding
a block to the Bitcoin ledger; and “mine” a certain number of new Bitcoins. The main
shortcoming of PoW incentives stems from growing sustainability concerns (Digital
Trends) – the annual energy cost for mining Bitcoins is estimated to be already over a
billion dollars (Digiconomist).

While regular Bitcoin users may not solve puzzles, they are expected to audit the
well-formedness of every ledger entry. Users who interact only intermittently with the
blockchain network can still sync their copy of the ledger by downloading and examining all
transactions that occurred since their last sync.

107

Large-scale
processes in
a blockchain

1.2 Cryptographic hash functions
Central to blockchain networks is a cryptographic hash function h() for computing a
succinct commitment to the ledger. The power of a cryptographic one-way hash function h()
is deceptively simple – it is simply a mechanism to quantify certainty in the chronological
order in which two events occurred. Specifically:

y ¼ h xð Þ) xA 0; 1f gn existed before yA 0; 1f gn: (2)

More specifically, given two sequences of bits (or bit-strings) x, y, where h() transforms a
preimage xA {0, 1}* (bit-string of any length), to a digest yA {0, 1}n (bit-string of fixed length
n), one can conclude with a very high degree of certainty that “x existed before y.” More
specifically, the uncertainty in such a claim is? (2−n). In other words, for large enough n (say,
n⩾ 128 bits) it is impractical to choose a digest first, and determine a suitable preimage later.

In current blockchain networks the most commonly employed hash function h() is the
hash standard SHA-2 with 256-bit digests. The specific utility of the hash function h() in a
blockchain is that it enables computation of a single hash (a 256-bit SHA-2 hash) α, as the
commitment to the entire ledger. More specifically:

(1) a Merkle (1987) hash tree is used to compute a commitment (a hash) vi to each block; and

(2) a hash accumulator (Bayer et al., 1993) is used to compute the commitment α to a
chain of values v1, v2, ….

The explicit consensus between all users (at any specific time) is on the precise value of α.
Due to the properties of h() (and more complex constructions using h()), an explicit
consensus on α is an implicit consensus on every ledger entry.

1.3 Scalable blockchain processes
The practical utility of executing processes on a universally trusted platform (like a
blockchain network) is that such as platform can eliminate, or substantially reduce the scope
of, expensive infrastructures in the form of organizations like banks, insurance companies
and even governments. However, real-world processes needed to replace such
infrastructures may have possibly billions or even trillions of process states. For such
large-scale processes, it is impractical for every blockchain participant to audit the complete
history of all process states. More specifically, while some active participants may be
incentivised (or paid) to audit every transaction, it is impractical to expect passive users,
who may only participate intermittently, to do so.

Realizing scalable blockchains calls for strategies that permit passive users to selectively
audit the correctness of any specific ledger entry. More specifically, scalable blockchains
should strive to reduce the overhead necessary for passive and intermittent participants to
perform selective audits.

Second, proactive strategies to eliminate ambiguities are essential for universal
consensus, and thus, prevent forking of the blockchain. Consider a scenario where two
miners A and B provide two different correct solutions to a puzzle (for adding a block).
Such a state can cause forking of the blockchain, where different users may sync up with
different forks. The practical implication of a forked ledger is that users following different
forks have different interpretation of the truth, namely, the actual state of the process.
For example, the state of wallet A and B will be different in both forks (A is the beneficiary
of the mined Bitcoins in one fork and B in the other). If the reason for forking is due to an
erroneous entry in one fork (e.g. inclusion of an ill-formed transaction), reducing the
overhead for selective audits enables passive users to readily identify and follow the correct
fork. Reasons for multiple forks without ill-formed transactions can be due to ambiguities in
the order of transactions, and possibly even the interpretation of the process.

108

JCMS
2,2

Third, it is essential to reduce the susceptibility of the blockchain broadcast network to
clogging attacks (Oppliger, 1999). One common form of clogging attack involves an attacker
sending a transaction with random bits as “signature.” Only after performing expensive
asymmetric cryptographic computations to verify the “signature,” will verifiers realize that
the signature is invalid. Clogging attacks are an especially serious concern in broadcast
networks, as it takes very little effort for an attacker to send random bits, to expend
computational resources of a large number of receivers.

This paper proposes multiple strategies aimed at addressing the three requirements
above. Specifically:

(1) Toward reducing overhead for intermittent passive users to sync up with the
current state of the ledger, a hash calendar (Buldas and Saarepera, 2014) is proposed
as a better alternative to the hash accumulator.

(2) Toward reducing the overhead for selective audits, an ordered Merkle tree (OMT)
(Ramkumar, 2014) is used to capture succinct commitments to process states.

(3) Two strategies are proposed for eliminating ambiguities that may lead to forking:

• the first is the use a separate timestamp ledger (TSL); and

• the second is to interpret any blockchain process as a finite state machine (FSM),
where every blockchain transaction is associated with an unambiguous
next-state function.

(4) Finally, to address clogging attacks, the use of expensive asymmetric
cryptography-based digital signatures is eliminated.

The rest of this paper is organized as follows. Section 2 outlines cryptographic protocols for
scalable blockchains. Section 3 outlines strategies for:

(1) introducing checkpoints in ledger entries to enable selective audits; and

(2) unambiguous description of (FSM) next-state functions as explicit predicates – in
the form of:

• preconditions (predicates to commence the state transition); and

• postconditions (predicates on completion of the transition).

Section 4 outlines the architecture for a scalable blockchain that takes advantage of
strategies outlined in Sections 2 and 3. Conclusions are offered in Section 5.

2. Cryptographic protocols
Hash chain based protocols discussed in this section include Merkle (1987) hash trees, OMT
(Ramkumar, 2014), hash accumulators (Bayer et al., 1993), hash calendar (Buldas and
Saarepera, 2014) and the timed efficient stream loss-tolerant authentication (TESLA)
broadcast authentication protocol (Perrig et al., 2000).

2.1 Merkle hash tree
A binary Merkle (1987) hash tree (Merkle, 1987) of depth d has 2i nodes at each of the depths
0⩽ I⩽ d nodes. Figure 1 depicts a tree with depth d ¼ 3. The N ¼ 23¼ 8 nodes at depth
d ¼ 3 are leaf nodes. Internal nodes have two child nodes – a left child and a right child.
Specifically, an internal node uki at depth k is related to its two child nodes u

kþ 1
2i and ukþ 1

2iþ 1 at
depth k+ 1 as follows:

uki ¼ h ukþ 1
2i ; ukþ 1

2iþ 1

� �
: (3)

109

Large-scale
processes in
a blockchain

Corresponding to every leaf (non-internal) node at depth d, are d verification objects (VOs),
one in each of the levels d, d− 1,…, 1. The sets of d VOs ui of a leaf node udi are nodes
complementary to udi , as they are commitments to all leaf nodes except udi .

Typically, a leaf node udi ¼ h Lð Þ, where L is a leaf. Thus, for any leaf L there is a
sequence of d hash operations fbt(), namely:

r ¼ f bt h Lð Þ;uið Þ; (4)

which outputs the root r of the tree. For example, consider leaf Ld in Figure 1 with leaf node
u33 ¼ h Ldð Þ. The three VOs of u33 are u ¼ u32; u

2
0; u

1
1

� �
. The sequence of d ¼ 3 hash

operations are as follows:

r ¼ f btðu33; fu32; u20; u11gÞ ¼ hðhðu20; hðu32; u33ÞÞ; u11Þ: (5)

In Equation (4), the fact that the output of fbt () is r is proof that “the leaf L (and the VOs ui
of L) should have existed before the root r was computed.” In other words, given (a tree with)
root r, this constitutes proof of existence of the leaf L and its VOs ui in the tree.

In most blockchain networks, N⩾1 well-formed transactions included in a block are
leaves of a Merkle hash tree. The root of the tree vi is a commitment to the entire block.
Existence of the leaf L in the block can be demonstrated by providing a set of log2 N VOs u
that satisfy fbt (h(L), u ¼ vi.

In addition, the tree structure also permits efficient incremental updates to the leaves,
which is a feature that is not taken advantage of in most blockchain networks. Specifically,
given that r ¼ fbt (h(L), u, proving existence of leaf L, two kinds of incremental updates
are possible:

(1) leaf update: corresponding to an update of the verified leaf L to L′, the new root is
r′ ¼ fbt (h(L), u; and

(2) insertion/deletion of leaves: if a new leaf Ln is inserted to the right of existing leaf L,
the new root is r′ ¼ fbt (h(h(L), h(Ln))), u; if root update r→r′ can be demonstrated to
be consistent with inserting a leaf, then an update r′→r is for deleting a leaf.

Thus, a Merkle hash tree permits efficient computation of a commitment (root) to a dynamic
set of leaves with practically unrestricted cardinality. For a tree with a billion leaves, 30
hash operations using 30 VOs will be required to verify the existence of a leaf. An additional

u3
2

u0
0

u0
1

u0
2 u1

2

u0
3 u1

3 u2
3 u3

3 u4
3

u2
2

u7
3u6

3u5
3

u1
1

Lb Lc Ld Le Lf Lg LhLa
2Notes: Gray shaded nodes u2 ; u0 and u1 are complementary to

(hatched) leaf node u3=h(L3)

3

3

1

Figure 1.
A binary Merkle
hash tree

110

JCMS
2,2

30 hash operations (using the same VOs) will be required to update the leaf, or insert a new
leaf, or delete a leaf.

2.2 Ordered Merkle tree
In an OMT (Ramkumar, 2014), proof of existence of a leaf can simultaneously convey
existence of key-value pairs, nonexistence of key-value pairs and possibly highest/
lowest keys.

Each leaf in an OMT is a three-tuple of the form {i, in, vi}. Together, all leaves form
collection of key-value pairs with unique keys. In a leaf {i, in, v}, i is the unique key in
the collection, in is the next-key and vi is the value of the item with key i. For a lone item
in the collection with in⩽ i, i and in are respectively the highest and lowest keys (i ¼ in for a
collection with a single item).

An item with key j can be inserted only if no item with key j currently exists.
Nonexistence of key j can be demonstrated by demonstrating existence of a leaf {i, in, vi}
such that:

jA i; in)½½
io jo in if in4 i

jo inp i or inp io j if inp i

(
: (6)

2.3 Hash accumulator
A hash accumulator (Bayer et al., 1993; Ramkumar, 2014) is a dynamic commitment to a
growing list of values v1 … vn, and is computed as follows:

a1 ¼ v1; a2 ¼ h a1:v2
� �

; . . .; an ¼ h an�1:vn
� �

. . .: (7)

Specifically, the accumulated hash αi is a commitment to all values v1… vi accumulated thus
far, and the chronological order in which they were accumulated. From the properties of h(),
it is impractical to determine any sequence of values different from v1 … vi, for which the
accumulated hash is αi.

In most blockchains, values like v1, v2,… are commitments (Merkle tree roots) of blocks.
The accumulated hash α is a commitment to the entire ledger.

Given the value of the current accumulated hash α, all values v1 … vn are necessary to
determine if a specific vj exists in the list.

2.4 Hash calendar
A hash calendar (Buldas and Saarepera, 2014) can be used to compute a dynamic
commitment to growing list of values v1…vn…, if new values are added at a constant rate
(e.g. vi is added at time iΔ + τ where τ is the calendar start-time, and Δ is a fixed interval).

The hash calendar is implemented as a Merkle hash tree where leaves v1…vn… are
added from left to right. In general, when n is not a power of 2, the tree may be seen
consisting of up to log2 n complete subtrees. For example, after 18 intervals (n ¼ 18), the
tree can be seen as consisting of two complete subtrees – a tree with 16 leaves, and a tree
with 2 leaves. Note that the number of ones in the binary representation of n is the same as
the number of complete subtrees. If n ¼ 22¼ 10,110b the tree will have three complete
subtrees with 16, 4 and 2 leaves, respectively.

The dynamic commitment g to a calendar is the accumulated hash of the roots of all
(maximum of log2 n) complete subtrees.

111

Large-scale
processes in
a blockchain

2.5 TESLA
In the TESLA (Perrig et al., 2000) broadcast authentication protocol, the sender A
of a broadcast stream chooses a random value (say) KA

0 , and creates a hash chain
fKA

0 � � �KA
L g, where:

KA
1 ¼ h KA

0

� �
;KA

2 ¼ h KA
1

� �
; . . .;KA

L ¼ h KA
L�1

� �
:

From the properties of h(), given KA
i it is trivial to compute KA

jX i (by repeated hashing
j− i times), but impractical to compute KA

jo i .
The tail value of the chainKA

L is the “public key” ofA. It is associated with two additional
values: an absolute value of time T and a time interval Δ. The interpretation of this
association is that “KA

L�i will remain A’s secret until time T+ iΔ.”
A hashed message authentication code (HMAC) for a message M and secret K, namely,

μ ¼ HMAC(M, k), is typically a token accompanying a message M. The receiver with
knowledge of K on verifying that HMAC(M, k) is the same as the token accompanying the
message can safely conclude that the token μ could have been computed only by an entity
with the knowledge of the key K.

Consider a scenario where an HMAC sM ¼ HMACðM ;KA
L�iÞ for a message M using

value KA
L�i from the hash chain was seen before time t ¼ T + iΔ. Later, after time T + iΔ,

the value KA
L�i from the chain is disclosed, satisfying sM ¼ HMACðM ;KA

L�iÞ. This is proof
that σM could have been computed only with the knowledge of KA

L�i (and only the creator of
the chain A could have had knowledge of KA

L�i before time t ¼ T + iΔ).
In other words, as long as it is possible for everyone to establish that σM was “seen”

before time t, everyone can be convinced that the message was sent by A. In such a scenario,
σM is a digital signature for the message M by A. As we shall see later, one possible
approach to ensure that “σMwas seen before time t” is by employing a timestamping service
(TSS) to timestamp the value σM. Thus, in conjunction with a TSS, TESLA broadcast
authentication becomes a non-reputable digital signature scheme.

In theory, digital signatures based on asymmetric cryptographic primitives do not need
to rely on an additional infrastructure for timestamping. In practice, timestamps for
signatures are required in any case in scenarios where we need to cater for revocation of
keys. Specifically, timestamping is required to ensure that a signature was computed
before the key was revoked. Another advantage of asymmetric cryptography-based
digital signatures is that they are instantly verifiable. Note that TESLA signatures
have to be computed when the key used for computing the HMAC was a secret that can be
verified only after the key used for HMAC is made public (along with the signed
message/transaction).

This disadvantage of TESLA is perhaps more than offset by its advantages. First,
clogging attacks can be effectively addressed. Second, in several evolving blockchain-based
application scenarios, transactions may be measurements from sensors or severely
resource-limited Internet of Things devices (Xu et al., 2016) that may not be capable
of performing asymmetric computations. Third, in the emerging post-quantum
computing (Chen et al., 2016) world, asymmetric cryptography may no longer be a viable
option anyway.

3. Blockchain processes as an FSM
The FSM model of process P with dynamic process states S can be represented
as d: I� S/S where δ represents a next-state function triggered by unconstrained input I.
In practice, any process P can be defined as using a set of (say) m next-state functions
f1() … fm().

112

JCMS
2,2

In a blockchain, inputs that trigger execution of next-state functions are broadcast
transactions of m different types. Specifically, execution of a next-state function fj() is
triggered by a transaction T j

i of type j, broadcast at some time t ji . Function f jðTj
iÞ

is executed only if the transaction is well-formed, and results in a change in the process
state S. The progression of states of process P due to a sequence of transactions
T j1

1 ; . . .;T
jn
n can be represented as follows:

S0 ⟶
f j1 T

j1
1

� �
S1 ⟶

f j2 T
j2
2

� �
S2 � � �Sn�1 ⟶

f jn Tjn
n

� �
Sn; . . .jiA 1. . .mf g: (8)

In Equation (8), S0 is the initial state of the process, and T ji
i is the ith “well-formed”

transaction of type jiA {1 … m}. Given the initial state S0, and descriptions of
functions f1()…fm(), the state Sn is completely determined by the sequence of transactions
T1, T2,…,Tn. Consequently, for purposes of auditing the correctness of process states, it is
sufficient for the ledger entries e1, e2, … to be a list of transactions in their chronological
order, or more specifically:

e1 ¼ t1;T1ð Þ; e2 ¼ t2;T2ð Þ; . . .ei ¼ ti;Tið Þ; . . .: (9)

As an example, if the process executed by a blockchain represents a bank, the types of
transactions may be OpenAccount(), CloseAccount(), Transfer(), etc.
A transaction Transfer() to transfer an amount x from an account A to an account B
will be deemed well-formed only if it is authorized (using a digital signature) by A, and
sufficient balance exists in account A.

A TSS (Bayer et al., 1993) attributes a “seen-at-time” t to a value v to be timestamped.
If the blockchain is used to implement a TSS, where the state of the process is merely receipt
of timestamp requests, no further processing is necessary. A blockchain TSS merely needs
to maintain a ledger with entries of the form:

e1 ¼ t1; v1ð Þ; e2 ¼ t2; v2ð Þ; . . .ei ¼ ti; við Þ; . . .; (10)

where an entry (ti, vi) states that vi was seen-at-time ti (or more specifically, vi was submitted
for timestamping at time ti).

In general, blockchain transactions like T1 … Ti need to be signed because we need to
know the source of the broadcast. Values like v1 … vi submitted for timestamping need not
be digitally signed, as a TSS says nothing about who sent vi – it just says that vi existed at
time ti. Most often, a timestamp is for a document. The creator of a document D can compute
a hash v ¼ h (D) and submit it to the TSS for timestamping. Later, existence of a timestamp
(t, v) is proof that a document D satisfying v ¼ h (D) existed before time t (as it is impractical
for anybody to create the document D after the timestamp for v was obtained). This
mechanism is useful for resolving copyright issues.

3.1 Checkpoints
As we saw in the previous section, it is sufficient for ledger entries to be a sequence as
transactions as in Equation (9). With this information, while anyone can determine the state
of the system Sn following n transactions, the overhead may be prohibitive for regular
users, especially for large-scale systems with billions of process states.

If it is possible to introduce “checkpoints” corresponding to process states like Si , Siþ 1
before and/or after each transaction, then verification of correctness of any specific
transaction will involve verification of correctness of the single state change:

Si ⟶
f ji T

ji
i

� �
Siþ 1: (11)

113

Large-scale
processes in
a blockchain

An OMT is useful for creating such checkpoints. Specifically, if all process states are
considered as leaves of an OMT, then two values si and si+1 can be seen as commitment to
process states before and after the transaction. More specifically, si is the root of an OMT
whose leaves represent process state Si ; si+1 is the root of an incrementally updated OMT,
whose leaves represent process states Siþ 1.

In the proposed approach, process states, and all nodes of the OMT with process states
as leaves, need to be maintained only by incentivised users. Ledger entries corresponding to
every transaction include OMT roots like si and si+1.

As long as regular users have reliable access to any ledger entry, and if it is possible
for users to determine which specific process states were implicated (read/updated or
inserted/deleted) in the transaction, they can check the correctness of the state change, by
obtaining Oðlog 2NÞ VOs from incentivised users.

3.2 An example
As an example, consider a ledger entry:

t;T; s; s0½ � (12)

whereT is a transaction that occurred at time t. According to the ledger entry, transactionT
required the system state (OMT root) to be updated from s to s′. Assume that the purpose of
this transaction T ¼ [B, x]A was to transfer an amount x from an account A to account B.
The process states (leaves of a tree) implicated in this transaction are:

(1) a leaf LA ¼ {A, An, a} showing current balance a in account A, and An as the next
account number; and

(2) a leaf LB ¼ {B, Bn, b} showing current balance b in account B.

A state-change function is f(), where s⟶
f Tð Þ

s0 checks if the transaction is well-formed.
According to f(), transaction T ¼ [B, x]A is considered well-formed only if it is signed by A,
and if the balance in account A, a ⩾ x +m + f, where m is a minimum balance requirement,
and f is a transaction fee.

Following the transaction, the two leaves need to be updated to (A, a′) and (B, b′),
respectively, where a′ ¼ a − x − m − f and b′ ¼ b + x. In other words, using:

(1) values A, B included in the transaction T; and

(2) auxiliary values I ¼ {a, An, b, Bn, VOs} provided by an incentivised user (from
leaves and nodes of the OMT maintained by the incentivised user).

Any regular user can determine that the state change s→s′ is correct, only if the following
predicates are true, namely:

(1) leaves LA ¼ {A, An, a} and LB ¼ {B, Bn, b} exist in a tree with root s; and

(2) leaves L0
A ¼ A;An; a0f g and L0

B ¼ B;Bn; b
0� �

exist in a tree with root s′.

4. A scalable blockchain platform
In the broad outline of a scalable blockchain platform in Figure 2 for executing any number
of possibly unrelated large-scale processes, two separate ledgers are maintained – a TSL
and a process ledger (PL). Blockchain broadcasts of two types, namely, transactions and
TESLA MACs (which are signatures for transactions to be broadcast at a later time) are
timestamped and entered in the TSL. In practice, a small number of portals may exist for
users to submit broadcast packets for timestamping. Transactions in the TSL are then
processed in a chronological order to create PL entries.

114

JCMS
2,2

4.1 Timestamp ledger
Two types of broadcasts that are timestamped include:

(1) [μ, t′]: a TESLA signature (MAC) μ along with an expected time t′ when a
transaction (for which μ is a signature) will be sent; and

(2) [T,∑]: a signed transaction T along with signature∑; in the signature∑ ¼ {S, K,
j, n, tmac},K is jth value in the nth TESLA chain of sender S; tmac is the time at which
the MAC was timestamped earlier.

The operator of each portal batches the requests into regular intervals. The
operator timestamps each request, and computes an accumulated hash of all (now
timstamped) requests received during the current interval. At the end of the
current interval, the operator signs the accumulated hash as proof of acceptance of all
requests during the interval. The portal broadcasts the stream of all timestamp
requests received during the interval along with the accumulated hash and signature for
the interval.

The process for creating the TSL involves collating all timestamp requests from possibly
multiple portals, and creating blocks corresponding to uniform intervals of time, say Δtl.
Each entry in a block (a Merkle tree leaf) can be a timestamped TESLA MAC (tμ, μ, t′), or a
timestamped transaction (tT, T, ∑).

For creation of the TSL one entity is declared to have the power to resolve ambiguities in
consensus. Merkle tree roots vtl1 ; v

tl
2 ; . . . of blocks created in this fashion (at a fixed rate) are

used to construct a hash calendar with dynamic commitment gtl .

p1

p2

pk

TS requests

(�, t′), (T, Σ)

TS requests

(�, t′), (T, Σ)

TS requests

(�, t′), (T, Σ)

.

.

.

.

.

.

+ TSL Blocks
(tT, T, Σ)

(tT, T, Σ)

(t�, �, t′)

(t�, �, t′)

TSL, �tl

Exec Trans
PL

Blocks

{tT, T, s, s′}
PL, �pl

v1
pl

, v2
pl

,...

v1
tl, v2

tl,...

Notes: Two types of timestamp requests are timestamped

by portal operators p1...pn. Timestamp requests are

collated and used for creating timestamp ledger (TSL)

blocks, where each block corresponds to an interval of

length �tl. The commitments to TSL blocks vi
tl, v2

tl,... are

TSL entries made at a constant rate (1/�tl) to create a hash

calendar with commitment �tl. Execution of transactions

(tT, T, Σ) in the TSL (signed using a MAC entry

(t, �, t′�tT), also in the TSL) triggers state changes,

resulting entries of the form {(tT, T, s, s′)} added to in

uniformly spaced process ledger (PL) blocks

(corresponding to intervals of length �pl); commitments

vi
pl

, v2
pl

,... to PL blocks are PL entries made at a constant

rate (1/�pl) to create a hash calendar with commitment �pl

Figure 2.
A scalable blockchain

for executing
large-scale processes

115

Large-scale
processes in
a blockchain

4.2 Blockchain processes and PL
Timestamped signed transactions (tT, T, ∑) in the TSL are processed by incentivised users to
create PL entries. The first step toward this is the verification of signature∑ ¼ {S,K, j, n, tmac},
using TSL entry (tmac, μ, t′≈ tT). Incentivised users, who continuously monitor the broadcast
channel, may simply cache broadcasts like (tT,T,∑), (tmac, μ, t′) that are intended to be added to
TSL to avoid the overhead of actually accessing the TSL. The process for signature verification
using ∑ and μ is outlined later in Section 4.3.

Transactions with good signatures are processed to create PL entries. Every process has
a unique identifier Θ. Every process is defined by a set of m state-change functions
dY1 ð Þ. . .tYmð Þ. Broadcast transactions T that trigger a state-change function dYi ð Þ explicitly
identify the process Θ, function index i and the sender (who signed the transaction), in
addition to other process specific values.

The unique process identifier Θ is the root of a static hash tree. The leaves of the
static tree are static descriptions of state-change functions dY1 ð Þ. . .tYmð Þ. Each dYi ð Þ can be
seen as a mapping:

dYi : tT ;T; s; If g) Preconditions; Postconditions; s0
� �

; (13)

where:

(1) T is the triggering transaction with a timestamp tT;

(2) I are auxiliary values that are not included in the transaction, but are available to
incentivised users who maintain all OMT leaves and nodes;

(3) the OMT root s is the commitment to the process states before the transactionT; and

(4) the OMT root s′ is the commitment to the process states after the transaction T.

Successful execution of a state-change function results in the creation of an entry in the PL.
More specifically, the PL consists of blocks created at regular intervals of time, where each
block consists of multiple entries of the form:

tT ;T; s; s0
� �

: (14)

All well-formed transactions occurring in a specific interval of time are added to a single block
as leaves of a hash tree. The sequence of roots of such trees v1, v2, v3,… (one corresponding to
each block) is added to the ledger at regular intervals of time using a hash calendar.

Incentivised users may choose to maintain an additional log of auxiliary values
I necessary to verify preconditions and postconditions for every transaction.

Given a ledger entry, {tT, T, s, s′} any user can verify the validity of the signature∑ by
fetching the timestamped MAC μ from the TSL. The user can then proceed to verify the
correctness of the state change in exactly the same manner as an incentivised user, except
that auxiliary values I necessary to verify that preconditions and postconditions are
demanded from an incentivised user.

4.3 Infrastructure for digital signatures
Timestamped transactions of the form (tT,T,∑) in the TSL are first verified for a consistent
signature ∑ ¼ (S, K, j, n, tmac). The process for verifying a signature utilizes another TSL
entry – a timestamped MAC of the form (tmac, μ, t′) where t′≈ tTwas the expected timestamp
of the transaction T. Conveying the expected time t′ is merely to permit incentivised used to
cache MAC μ in anticipation. Regular users, however, have the additional overhead for
fetching a TSL entry.

116

JCMS
2,2

The signature ∑ ¼ (S, K, j, n, tmac) for T is deemed legitimate only if the following
predicates are true:

(1) the nth chain of user S, associated with a commitment c, start-time T and interval Δ,
has not been revoked;

(2) μ ¼ h (T, K) and tmac o T + jΔ, where (tmac, μ, t′) exists in the TSL; and

(3) the result of hashing K repeatedly, j times, is c.

The infrastructure for maintaining parameters associated with different chains of users is
itself a blockchain process/application with a unique identifier, say Θ∑.

4.3.1 Process Θ∑ states. Every user is associated with a long-term public identity, which
is the same as the commitment to the first hash chain created by the user. The user can later
create any number of hash chains with different start times and intervals, and bind
commitments to such chains to the user’s long-term identity. Three different transaction
types for this application are employed by users to create their long-term identity, certify
new chains and revoke chains.

The states of the process for maintaining hash chain parameters are represented using
leaves that represent key-value pairs of the form:

key ¼ S:i
� 	

; value ¼ c:D:T:R:tr
� 	� �

; (15)

where item keys are concatenations of a long-term key S and a chain index i. The value of an
item with key S:i is a concatenation of five values:

(1) a commitment c to chain i (where c ¼ S for i ¼ 1);

(2) interval Δ;
(3) start-time T;

(4) a value R, whose preimage needs to be disclosed by the user S to revoke the chain; and

(5) the time tr at which the chain was revoked (which is set to 0 for an unrevoked chain).

To join the blockchain network:

(1) a user generates her first chain K0 … Kl of any length, and chooses appropriate
values of interval Δ and start-time T; S ¼ Kl will ultimately become the user’s
long-term identity;

(2) the user chooses a random R0 and computes R¼ h (R0), and stores R0 and K0 in a
secure location; and

(3) the user computes a MAC μ ¼ h(Kn, Δ, T, R, Ki) where Ki is a secret from the hash
chain (usually Kl−1), and submits the value [μ, t′] for timestamping while Ki is a
secret. The value t′ is an estimate of time at which the certificate (for which μ is the
signature) will be submitted.

Let the timestamp obtained for μ be tmac. Around time t′, the user submits a transaction T
(indicating process Θ∑ and function index i ¼ 1 for creating the first chain) along with a
signature ∑s, where:

T ¼ YS; 1; S;D;T;R½ �;SS ¼ S;Ki; j; 1; tmacð Þ: (16)

As no entry exists for user S yet, the verification of the signature for this transaction is
considered as a special case. If entry (tmac, μ ¼ h (T, Ki)) exists in TSL, and if tmac o T + jΔ,
and if hashing K, j times, yields S, the signature is accepted as valid.

117

Large-scale
processes in
a blockchain

4.3.2 Process Θ∑ transactions. The predicates (preconditions and postconditions) for
different Θ∑ transactions are as follows.

Transaction type 1 is for creating the first chain for a new user. Type 2 is for creating the
nth chain where n W 1 chains. Type 3 is for revoking the nth chain. If the OMT roots of the
process Θ∑ are s and s′, respectively (before and after a transaction), the preconditions and
postconditions for each transaction can be expressed as follows:

1: tT ;T ¼ YS; 1;S;D;T;R½ �S ; I ¼ x; y; vxf g
Pre x; y; vxf gAs; S:1A ½x; y½
Post x; v; vxf gAs0; fS:1; y; S:D:T:R:0gAs0

2: tT ;T ¼ YS; 2;c;D;T;R½ �S ; I ¼ n; vn�1; xf g
Pre S:n�1; x; vn�1

� �
As; S:nA ½S:n�1; x½

Post S:n�1; S:n; vn�1
� �

As0; S:n; x; c:D:T:R:0
� �

As0

3: tT ;T ¼ YS; 3;n;R0½ �S ; I ¼ c;D;T;R; xf g
Pre S:n; x; c:D:T:R:0

� �
As; h R0ð Þ ¼ R

Post S:n; x; c:D:T:R:tT
� �

As0

(17)

Timestamped transactions of the form (tT, T) in the TSL with valid signatures (from a
sender S) are triggers to state changes. The precondition for a type 1 transaction from a user
S is that no entry should exist for key S:1, which is demonstrated by the existence of an
item for key x with next-key y, such that S:1A x; y½ �. The postcondition is that an entry for
index S:1 is added with values Δ, T, R included in the transaction.

The precondition for adding the nth chain (transaction type 2) for S is the existence of the
n−1th chain for S, with next index x satisfying S:nA S:n�1; x

� 	
. The postconditions

include modification of the next index x in the existing item, and introduction of a new item
for key S:n with next index as x.

The precondition for revoking the nth chain is that the value R0 included in the
transaction should be a preimage of a value R in the certificate of the unrevoked nth chain
for S. The postcondition is that the time of revocation is updated from 0 (for an unrevoked
chain) to the transaction time tT.

4.4 Selective audits by regular users
Let Tb be the start-time of the both blockchain ledgers (TSL and PL). As users know the
current time, they are aware of the current number of blocks (say nt, np) in both TSL and PL.

If, for example, n ¼ 274¼ 100,010,010b (where bits 9, 5 and 2 are one) the user expects a
calendar hash gn to be accompanied by two values r5 and r9, satisfying:

gn ¼ h r9; h r5; r2ð Þð Þ: (18)

If the next time the same user utilizes the ledger is at a time when n′ ¼ 308 ¼ 100,110,100b
the user expects g0n along with values r03; r

0
5; r

0
6 and r09 where r

0
9 ¼ r9; r05 ¼ r5, and r5 ¼ r05

and r3 should be nodes in a tree with root r06. VOs for verifying this fact can also be
demanded from active users.

Thus, using a calendar hash permits intermittent users to check the validity of the
current calendar hash against previously known values. Consequently, passive users store

118

JCMS
2,2

only minimal state information (past commitments to log2 n calendar hashes), and are not
required to fetch every single block to verify the validity of the current calendar hash gn.

The trust in the correctness of gn can be leveraged verifying the commitment vi to any
block in the past, by requesting up to log2 n VOs. With trust in the correctness of vi, the user
may demand the entire block, or a specific entry, or the last m entries, etc., along with VOs
for existence proofs in a tree with root vi.

Once users have authentic copy of a specific leaf in a specific PL block, namely, a PL
entry {t, T, s, s′}, they can proceed to check the correctness of the state change s→s′
triggered by transaction T as described in Section 4.2.

5. Conclusions
Blockchain networks offer a universally trusted computing platform, which can be
leveraged to replace (or, at the minimum, limit the role of) high-overhead infrastructures like
banks, insurance and governments.

Utilizing the full ability of blockchain networks calls for explicit mechanisms to
reduce/eliminate ambiguities, to promote universal consensus (to avoid forking); low
overhead strategies for selective audits, to ensure that even intermittent users can readily
follow the correct fork (in the event a fork occurs); and mechanisms to reduce susceptibility
of the broadcast network to clogging attacks.

An architecture for a scalable blockchain platform and cryptographic protocols
underlying the architecture were proposed to address three major concerns that affect
scalability of blockchains.

References

Bayer, D., Haber, S. and Stornetta, W.S. (1993), “Improving the efficiency and reliability of digital time-
stamping sequences”, Sequences II: Methods in Communication, Security and Computer Science,
Vol. 2, Springer-Verlag, pp. 329-334.

Bentov, I., Charles, L., Mizrahi, A. and Rosenfeld, M. (2014), “Proof of activity: extending Bitcoin’s proof
of work via proof of stake”, ACM SIGMETRICS Performance Evaluation Review, Vol. 42 No. 3,
pp. 34-37.

Bozic, N., Pujolle, G. and Secci, S. (2016), “A tutorial on blockchain and applications to secure network
control-planes”, Smart Cloud Networks & Systems (SCNS). IEEE, Dubai.

Buldas, A. and Saarepera, M. (2014), “Document verification with distributed calendar infrastructure”,
US Patent No. 8,719,576, May 6.

Chen, L., Jordan, S., Moody, D., Liu, Y.-K., Peralta, R., Perlner, R. and Smith-Tone, D. (2016), “Report on
post-quantum cryptography”, Internal Report No. 8105, US Department of Commerce, National
Institute of Standards and Technology, April.

Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E., Sirer, E.G.,
Song, D. and Wattenhofer, R. (2016), “On scaling decentralized blockchains”, International
Conference on Financial Cryptography and Data Security, Springer, pp. 106-125.

Digiconomist, “Bitcoin energy consumption”, available at: https://digiconomist.net/bitcoin-energy-
consumption (accessed July 7, 2017).

Digital Trends, “The world’s cryptocurrency mining uses more electricity than Iceland”, available at:
www.digitaltrends.com/computing/bitcoin-ethereum-mining-use-significant-electrical-power/
(accessed July 7, 2017).

Kiayias, A., Russel, A., David, B. and Oliynykov, R. (2017), “Ouroboros: a provably secure proof-of-
stake blockchain protocol”, Annual International Cryptology Conference, Springer, Cham.

Merkle, R.C. (1987), “A digital signature based on a conventional encryption function”, Advances in
Cryptology, CRYPTO ‘87, Lecture Notes in Computer Science 293, Santa Barbara, CA.

119

Large-scale
processes in
a blockchain

https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
www.digitaltrends.com/computing/bitcoin-ethereum-mining-use-significant-electrical-power/

Nakamoto, S. (2008), “Bitcoin: a peer-to-peer electronic cash System”, October 31, available at: http://
nakamotoinstitute.org/bitcoin/ (accessed October 21, 2018).

Oppliger, R. (1999), “Protecting key exchange and management protocols against resource clogging
attacks”, in Preneel, B. (Ed.), Secure Information Networks, Springer, Boston, MA, pp. 163-175.

Perrig, A., Tygar, J.D., Song, D. and Canetti, R. (2000), “Efficient authentication and signing of multicast
streams over lossy channels”, Proceedings of the 2000 IEEE Symposium on Security and Privacy,
May 14-17, p. 56.

Ramkumar, M. (2014), Symmetric Cryptographic Protocols, Springer, Dubai.
Wood, G. (2014), “Ethereum: a secure decentralised generalised transaction ledger”, Ethereum Project

Yellow Paper, available at: https://github.com/ethereum/wiki/wiki/White-Paper

Xu, K., Qu, Y. and Yang, K. (2016), “A tutorial on the Internet of Things: from a heterogeneous network
integration perspective”, IEEE Network, Vol. 30 No. 2, pp. 102-108.

Further reading

ECDSA (2013), National Institute of Standards and Technology (NIST), Federal Information
Processing Standard (FIPS) 186-4, July, pp. 19-26.

Corresponding author
Mahalingam Ramkumar can be contacted at: ramkumar@cse.msstate.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

120

JCMS
2,2

http://nakamotoinstitute.org/bitcoin/
http://nakamotoinstitute.org/bitcoin/
https://github.com/ethereum/wiki/wiki/White-Paper

	Executing large-scale processes in a blockchain

