To read the full version of this content please select one of the options below:

Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining

Laurent Sabourin (French Institute for Advanced Mechanics / Blaise Pascal University / CNRS - Pascal Institute - Machines, Mechanisms and Industrial Systems Group, UMR CNRS/UBP/IFMA 6602 CLERMONT-FERRAND France)
Kévin Subrin (French Institute for Advanced Mechanics / Blaise Pascal University / CNRS - Pascal Institute - Machines, Mechanisms and Industrial Systems Group, UMR CNRS/UBP/IFMA 6602 CLERMONT-FERRAND France)
Richard Cousturier (French Institute for Advanced Mechanics / Blaise Pascal University / CNRS - Pascal Institute - Machines, Mechanisms and Industrial Systems Group, UMR CNRS/UBP/IFMA 6602 CLERMONT-FERRAND France)
Grigoré Gogu (French Institute for Advanced Mechanics / Blaise Pascal University / CNRS - Pascal Institute - Machines, Mechanisms and Industrial Systems Group, UMR CNRS/UBP/IFMA 6602 CLERMONT-FERRAND France)
Youcef Mezouar (French Institute for Advanced Mechanics / Blaise Pascal University / CNRS - Pascal Institute -Image, Perception Systems and Robotics Group, UMR CNRS/UBP/IFMA 6602, CLERMONT-FERRAND France)

Industrial Robot

ISSN: 0143-991x

Article publication date: 16 March 2015

Abstract

Purpose

The robot offers interesting capabilities, but suffers from a lack of stiffness. The proposed solution is to introduce redundancies for the overall improvement of different capabilities. The management of redundancy associated with the definition of a set of kinematic, mechanical and stiffness criteria enables path planning to be optimized.

Design/methodology/approach

The resolution method is based on the projection onto the kernel of the Jacobian matrix of the gradient of an objective function constructed by aggregating kinematic, mechanical and stiffness weighted criteria. Optimized redundancy management is applied to the 11-DoF (degrees of freedom) cells to provide an efficient placement of turntable and track. The final part presents the improvement of the various criteria applied to both 9-DoF and 11-DoF robotic cells.

Findings

The first application concerns the optimized placement of a turntable and a linear track using 11-DoF architecture. Improved criteria for two 9-DoF robotic cells, a robot with parallelogram closed loop and a Tricept are also presented. Simulation results present the contributions of redundancies and the leading role of the track.

Research limitations/implications

The redundancy-based optimization presented and the associated simulation approach must be completed by the experimental determination of the optimization criteria to take into account each machining strategy.

Practical implications

This work in robotics machining relates to milling operations for automotive and aerospace equipment. The study is carried out within the framework of the RobotEx Equipment of Excellence programme.

Originality/value

The resolution method to optimized path planning is applied to 9- and 11-DoF robotic cells, including a hybrid robot with a parallelogram closed loop and a Tricept PKM.

Keywords

Acknowledgements

This work has been sponsored by the French Government research program Investissements d’avenir through the RobotEx Equipment of Excellence (ANR-10-EQPX-44), by the European Union through the program Regional competitiveness and employment 2007-2013 (ERDF – Auvergne région), by French Institute for Advanced Mechanics and by the Auvergne region.

Citation

Sabourin, L., Subrin, K., Cousturier, R., Gogu, G. and Mezouar, Y. (2015), "Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining", Industrial Robot, Vol. 42 No. 2, pp. 167-178. https://doi.org/10.1108/IR-07-2014-0371

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited