To read this content please select one of the options below:

Study on curved surface design of sliding pair based on stepped topography model

Zhenpeng Wu (School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi, China)
Vanliem Nguyen (School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi, China)
Zhihong Zhang (School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi, China)
Liangcai Zeng (Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology, Wuhan, China and Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China)

Industrial Lubrication and Tribology

ISSN: 0036-8792

Article publication date: 10 September 2019

Issue publication date: 14 January 2020

84

Abstract

Purpose

The stepped topography of the friction pairs mainly causes the fluid film thickness to change in the direction of motion. In this region, there have very few topographical design methods for continuous or non-linear distribution of the fluid film. The purpose of this study is to analyze the effect of the curved surface on the performance of the liquid film.

Design/methodology/approach

First, a numerical simulation is used to solve the optimal bearing capacity and friction coefficient of the liquid film under the condition of the minimum film thickness. Then, the curved surface described by the sinusoidal curve equation is applied in the transitional region of maximum and minimum film thickness. The bearing capacity and the friction coefficient of the liquid film are respectively simulated and compared in the same condition of the minimum film thickness.

Findings

The research results show that the liquid film using the curved surface transition model, the optimal bearing capacity is significantly increased by 32 per cent while the optimal friction coefficient is clearly reduced by 38 per cent in comparison with using stepped surface model.

Originality/value

The friction pair with curved transition enables better lubrication performance of the liquid film and better adaptability under unstable conditions.

Keywords

Acknowledgements

The project was supported in part by the National Natural Science Foundation of China under Grants 51475338 and 51705377.

Citation

Wu, Z., Nguyen, V., Zhang, Z. and Zeng, L. (2020), "Study on curved surface design of sliding pair based on stepped topography model", Industrial Lubrication and Tribology, Vol. 72 No. 1, pp. 86-92. https://doi.org/10.1108/ILT-04-2019-0121

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles