To read the full version of this content please select one of the options below:

Fatigue modelling of aluminium plates reinforced with bonded fibre metal laminates

Jeremy Doucet (School of Applied Sciences, Cranfield University, Cranfield, UK)
Xiang Zhang (School of Engineering, Cranfield University, Cranfield, UK)
Philip Irving (School of Applied Sciences, Cranfield University, Cranfield, UK)

International Journal of Structural Integrity

ISSN: 1757-9864

Article publication date: 15 November 2013



This paper aims to present the implementation of a finite element (FE) model used to establish crack and delamination development in a Glare reinforced aluminium plate under fatigue loading. This model predicts the behaviour of bonded GLARE straps used as crack retarders for life extension of aircraft structures. In particular, it takes into account the interaction that exists between the substrate crack and the delamination crack at the interface with the reinforcement.


In this work, a 3D FE model with three-layer continuum shell elements has been developed to calculate changes in substrate stress intensity and in fatigue crack growth (FCG) rate produced by bonded strap reinforcement. Both circular and elliptical strap delamination geometries were incorporated into the model. Calculated stress intensity factors (SIFs) were used together with measured FCG data for substrate material to predict FCG rates for the strapped condition.


The model predicted a decrease in the SIF and a retardation of FCG rates. The SIF was predicted to vary through the thickness of the substrate due to the phenomenon of secondary bending and also the bridging effect caused by the presence of the strap. The influence of delamination shape and size on substrate crack stress intensity and delamination strain energy release rate has been calculated.


This research aims at developing modelling techniques that could be used when studying larger reinforced structures found in aircraft.



Doucet, J., Zhang, X. and Irving, P. (2013), "Fatigue modelling of aluminium plates reinforced with bonded fibre metal laminates", International Journal of Structural Integrity, Vol. 4 No. 4, pp. 416-428.



Emerald Group Publishing Limited

Copyright © 2013, Emerald Group Publishing Limited