Books and journals Case studies Expert Briefings Open Access
Advanced search

Analysis of loss in flexural stiffness of in-service prestressed hollow plate beam

Guanhua Zhang (Research and Development Center of Highway Maintenance Technology, Liaoning Communication Planning and Design Institute Co. Ltd, Shenyang, China)
Jiawei Wang (School of Civil Engineering, Northeast Forestry University, Harbin, China) (Research and Development Center, Liaoning Communication Planning and Design Institute Co. Ltd, Shenyang, China)
Jinliang Liu (School of Civil Engineering, Northeast Forestry University, Harbin, China)
Yanmin Jia (School of Civil Engineering, Northeast Forestry University, Harbin, China)
Jigang Han (Liaoning Communication Planning and Design Institute Co. Ltd, Shenyang, China)

International Journal of Structural Integrity

ISSN: 1757-9864

Publication date: 12 August 2019

Abstract

Purpose

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The purpose of this paper is to carry out a non-linear iterative calculation for a section of a prestressed concrete beam and obtain the change in stiffness after the section cracks.

Design/methodology/approach

The existing stress of prestressed reinforcement was measured by performing a boring stress release test on two pieces of an in-service 16 m prestressed concrete hollow plate. Considering the non-linear effects of materials, the calculation model of the loss in the flexural stiffness of the prestressed concrete beam was established based on the existing prestress. The accuracy of the non-linear calculation method and the results obtained for the section were verified by conducting a bending destruction test on two pieces of the 16 m prestressed concrete hollow plate in the same batch and by utilising the measured strain and displacement data on the concrete at the top edge of the midspan section under all load levels.

Findings

The flexural stiffness of the section decreases rapidly at first and then gradually, and structural rigidity is sensitive to the initial cracking of the beam. The method for calculating the loss in the flexural stiffness of the section established with the existing stress of prestressed reinforcement as a parameter is accurate and feasible. It realizes the possibility of assessing the loss in the rigidity of a prestressed concrete structure by adopting the existing stress of prestressed reinforcement as a parameter.

Originality/value

A method for quickly determining the loss in the stiffness of structures using existing prestress is established. By employing this method, engineers can rapidly determine whether a bridge is dangerous or not without performing a loading test. Thus, this method not only ensures the safety of human life, but also reduces the cost of testing.

Keywords

  • Bending test
  • Bridge engineering
  • Existing prestress
  • Non-linear iteration

Acknowledgements

Conflict of interest: the authors declare that there are no conflicts of interest regarding the publication of this paper. This study was supported by “the Fundamental Research Funds for the Central Universities” (2572017AB01) and Transportation Science and Technology Project of Liaoning Province of China (201512 and 201513).

Citation

Zhang, G., Wang, J., Liu, J., Jia, Y. and Han, J. (2019), "Analysis of loss in flexural stiffness of in-service prestressed hollow plate beam", International Journal of Structural Integrity, Vol. 10 No. 4, pp. 534-547. https://doi.org/10.1108/IJSI-09-2018-0055

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here