Linear and nonlinear buckling analysis for the material design optimization of wind turbine blades

Efstathios E. Theotokoglou
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou, Greece

Georgios Balokas
Department of Structural Optimization for Lightweight Design, Technische Universität Hamburg, Hamburg, Germany, and

Evgenia K. Savvaki
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou, Greece

Abstract

Purpose – The purpose of this paper is to investigate the buckling behavior of the load-carrying support structure of a wind turbine blade.

Design/methodology/approach – Experimental experience has shown that local buckling is a major failure mode that dominantly influences the total collapse of the blade.

Findings – The results from parametric analyses offer a clear perspective about the buckling capacity but also about the post-buckling behavior and strength of the models.

Research limitations/implications – This makes possible to compare the response of the different fiber-reinforced polymers used in the computational model.

Originality/value – Furthermore, this investigation leads to useful conclusions for the material design optimization of the load-carrying box girder, as significant advantages derive not only from the combination of different fiber-reinforced polymers in hybrid material structures, but also from Kevlar-fiber blades.

Keywords Composite materials, Finite element analysis

Paper type Research paper

1. Introduction

In recent years, wind energy has become the most effective alternative-renewable energy source, noting the highest growth rate in comparison with other renewable energy sources, for instance solar, hydropower, geothermal and tidal energy (Renewable Energy Policy Network for the 21st Century, 2015; Griffin, 2001). This is mainly due not only to the increasing energy needs and the simultaneous depletion of non-renewable energy resources (fuel, natural gas and coal), but also to the lack of environmental hazards and the practically unlimited resources. Consequently, the exploitation of wind energy systems, e.g. wind turbines, forms an industry domain that gathers strong interest in both research and construction activities. The need to optimize their performance results in higher power wind turbines with significantly longer blades and innovative features in terms of geometry and materials.

The blades are perhaps the most critical structural members of the wind turbine, since the increasing diameter of the rotor brings many challenges to the surface, regarding the design and construction. The rotor and the three blades constitute a rather flimsy structure, consisting of cantilever-mounted blades on a central rotating hub. So, the wind turbine blade (WTB) is essentially a cantilever beam, with key design criteria the high stiffness, the low weight, the long fatigue life and the aerodynamic shape. These features are
covered by fiber-reinforced composite materials. Such fiber-reinforced polymer (FRP) materials are implemented in laminates and sandwich structures not only for the outer aerodynamic shell, but also for the internal load-carrying support structure, ensuring the required strength and stiffness of the blade, both locally and globally.

In this paper, the support structure is investigated for the case of a hollow one-piece construction cross-section (box girder). Through parametric analyses, an attempt was made to investigate the buckling behavior of the load-carrying box girder due to flap-wise bending, with respect to the following parameters: the geometry, the loading imposition and the material properties. Totally, 15 models were used and in all cases both linear and nonlinear buckling analyses were performed. Linear analysis offers a quick check of the model and its response, while a rough value of the critical buckling load is estimated. However, nonlinear analysis leads to more realistic results and should always be performed in cases where changes in geometry due to large deformations significantly affect the relationship between the applied load and the displacement (geometrical non linearity).

This study offers a clear perspective not only about the buckling capacity and its sensitivity on the parameters mentioned above, but also about the post-buckling behavior of the models. Furthermore, this investigation leads to useful conclusions for the material design optimization of the load-carrying box girder.

2. Numerical modeling and analysis

2.1 Geometrical model

There are currently two major types of configuration for the internal geometry of the blade, which differ in terms of design and connection to the outer shell. The first case is the so-called two-piece construction and consists of two distinct vertical stiffness joints, known as shear-webs, which extend along the blade and provide the required internal support. The second case is the so-called one-piece construction and is extensively studied in the present paper. Here, the internal support of the blade is provided by a single hollow section structure, which extends almost to the entire length of the blade and is usually called box girder. The tension and the compression flange of this structure are welded to the upwind and downwind outer shell, respectively. The parts welded to the shell are called spar-caps and they are linked to the shear-webs, which are placed vertically in the cross-section, at 15 and 50 percent of the length of the chord c, as measured from the leading edge of the blade (Figure 1).

The box girder provides the required strength and stiffness of the outer shell of the blade, both locally and globally. For this reason, the box girder was chosen to be studied separately, since the dominant deformation mode is almost identical to the one of the blade,

Figure 1. Cross-section of the blade for the one-piece construction case

Source: Griffin (2001)
while the increased slenderness of the panels makes it sensitive to local buckling phenomena. Experimental and numerical data show that local (or shear) buckling is a major failure mode that significantly influences the total collapse of the blade (Sorensen et al., 2004; Thomsen, 2009; Theotokoglou and Balokas, 2015a, b), while investigation of the structural collapse of a WTB resulted to the conclusion that the structural collapse was caused by multiple local buckling-driven delamination processes (Haselbach et al., 2016).

The present study models the internal load-carrying box girder of a horizontal axis wind turbine, with nominal power 1 MW, 64.14 m tower and 63.04 m rotor diameter, for the case of a single box-like, hollow section internal support. The total length of the blade (from the rotational axis to the blade tip) equals to 30 m. The blades are divided into three sections, depending on the deformation levels due to the stress loads (Griffin, 2001). In our case, the root segment is 2.10 m long (equal to 7 percent of the blade length), the transition segment 5.40 m (equal to 18 percent of the blade length) and the main box girder segment 22.50 m, inside of which the internal support mechanism is located (hatched area in Figure 2).

For the numerical analysis, a finite element code was developed, using the ANSYS 14.5 software (ANSYS Engineering Analysis System, 2007). The analysis parameters chosen were: the geometry of the cross-section, the simulation of the flap-wise loading and the fiber-reinforced composite material properties. In all cases, both linear and nonlinear buckling analyses were performed. From the latter, the respective equilibrium paths (load-displacement curves) were extracted.

The dimensions and the design details of the examined blade correspond to the S818 airfoil model (Griffin, 2001). The coordinates of 24 points (six for each of the four cross-sections) were calculated at the beginning (location $z = 0.0$ m), the end (location $z = 22.5$ m) and two intermediate positions of the box girder. Then the finite element model was constructed by presuming linear longitudinal tapering (Figure 3). During the designing process, it is assumed double symmetry conditions for the cross-section with respect to the axes X and Y, which in fact is not entirely true, as it can be shown in Figure 1. However, it is acceptable, since the same assumption is made in relevant studies of the literature (Sorensen et al., 2004).

Shell elements were used (shell281 in ANSYS (ANSYS Engineering Analysis System, 2007)) for the simulation, which are the most common type of finite elements in WTB analysis. A mesh convergence study was conducted, in order to determine the size of the finite elements for which satisfactory accuracy is achieved within reasonable computing time. So for the discretization of the models, shell elements with side length equal to 300 mm were considered.

As it is obvious from Figure 3, the FE model was initially designed with the assumption of an angle formed in the transition area from the spar-cap to the shear-web. This assumption is adopted in similar studies (Jensen et al., 2006). However, it is not completely

![Figure 2. Division of the blade](Source: Theotokoglou and Balokas (2015))
realistic since there is some curvature in the transition area. This happens in order to achieve a smooth transition to the thinner shear-web and to avoid high stress concentration. The technique applied in similar cases in composites is called “ply-drop analysis” and is implemented with gradual termination of some layers in the required region that leads to thickness reduction (Sorensen et al., 2004; Theotokoglou and Balokas, 2015a, b).

Ply-drop analysis cannot be applied efficiently in a macro-scale level, so in this study a small curvature was given as a simplistic alternative (Figure 4(a)), at the initial corner of the spar-cap (Figure 4(b)). This modification in the cross-section design was used as an analysis parameter, in order to determine whether a small variation of the geometry of the model could affect the buckling load and the deformation of the panels.

2.2 Boundary and loading conditions
There are two types of bending for the WTB: the edge-wise bending, which is vertical to one of the two edges of the blade (leading edge and trailing edge) and is caused by the

Notes: (a) With curvature; and (b) without curvature at the transition area
gravity loads of the blade and the flap-wise bending, that is caused by the wind loads and is vertical to the large surface of the blade. Based on the global coordinate system shown in Figure 3, the edge-wise bending takes place around the Y-axis and the flap-wise around the X-axis. The blade also endures centrifugal forces due to the rotation of the rotor, although they are not significant and are usually neglected in the analysis.

In this study, four different loading simulations were examined in order to determine whether there is an influence in the critical buckling load and in the size and shape of the deformations. Moreover, in case of similar results we could reach to a conclusion regarding the most inexpensive performance.

All of our load alternatives cause flap-wise bending to the box girder, because it is the most critical condition and the one that usually leads to failure at local and/or global levels (Sorensen et al., 2004; Gaudern and Symons, 2010). Specifically, the load was simulated with: uniform pressure, vertically spaced at the upper spar-cap (red lines matrix in Figure 5(a)), linear load along the model imposed in the middle of the upper spar-cap (Figure 5(b)), concentrated load at the free end of the model acting in the middle of the spar-cap (Figure 5(c)) and two concentrated loads of equal magnitude at locations $z = 7.5$ m and $z = 15$ m (Figure 5(d)). All the loads are static, imposed by an incremental step-by-step process (Newton–Raphson method) and are applied in a way that the upper spar-cap is in tension (upwind) and the lower spar-cap is in compression (downwind).

Regarding the boundary conditions, all four sides of the cross-section at the $z = 0$ location are assumed fully fixed (restrained rotation and displacement of the axes X, Y and Z).
2.3 Design and material selection

The selection of appropriate materials, which can optimally cover the increasing requirements of safety, efficiency and service life of a modern, high-power, wind turbine, is perhaps the most critical task and also a great challenge for the designers. The selected materials should have three basic properties: high material stiffness, not only to maintain the optimal aerodynamic shape of the blade, but also to prevent contact with the turbine tower and the local buckling phenomena (Gaudern and Symons, 2010), low density in order to minimize the gravity loads and long fatigue life to reduce material degradation during the operation and to ensure at least a 20-year service life (Burton et al., 1991).

For the blade construction, polymers reinforced with glass fibers (glass fiber-reinforced plastics–GFRP) or carbon fibers (carbon fiber-reinforced plastics–CFRP) are commonly used. The high-strength fibers operate as reinforcement and are retained by load bearing mean, the matrix, which is usually made of epoxy, because of its excellent properties. Such materials are light and additionally, their fibers have a much higher strength-to-weight ratio and stiffness-to-weight in comparison with steel or wood, which were initially used for blade manufacturing.

The outer airfoil skins are sandwich structures while the internal load-carrying box girder combines laminate with sandwich layup. Specifically, spar-caps are consisted of alternating equal thickness layers of triaxial laminates (−45°/0°/45°), and unidirectional laminates. The unidirectional laminates are providing the required bending stiffness, while laminates with fibers at ±45° direction are providing torsional stiffness and buckling resistance for the surface under compression. Shear-webs are constructed using a sandwich-like material consisting of triaxial composite laminate face sheets separated by a balsa wood core. The application of a core material increases locally the bending strength and buckling resistance. The layer order and orientation are shown in Figures 6 and 7, where layer sequence is from the outer side to the inner side of the box girder, while the identification number of each material is provided in Table I, along with the thickness of the corresponding layer.

Figure 6.
Model layup for the laminate structure of the spar-cap and the sandwich structure of the shear-web
The thickness of the spar-caps is constant along the blade length and equal to 21.6 mm, while the thickness of the shear-webs is 17.69 mm at the location $z = 0$ m and 12.92 mm at the location $z = 22.5$ m (linear reduction as a function of the chord length).

In this analysis, a comparison was conducted between three different fiber-reinforced composites: polymer with electrical glass fibers (GFRP), polymer with carbon fibers (CFRP) and not only polymer with aramid fibers (AFRP) but also combination of the above in hybrid models. In all cases, the same epoxy-based matrix was used, as well as the same layup in the spar-caps and shear-webs.

Glass fibers are currently the most widely used fibers for blade construction. They are available in various types and different chemical compositions, but E-glass fibers are those primarily used for the blades, due to their mechanical performance and resistance to corrosion. However, limited information is available on the structural design process of blades (i.e. properties, layup and layer thickness), since the information remains confidential between the manufacturers. Therefore, the material properties of the GFRP model, such as the thickness, sequence and orientation of individual layers, were obtained from a previous study (Theotokoglou and Balokas, 2015a, b) and have been derived from experimental results for the given fiber orientations and arrangement of materials used in another experimental study (Grujicic et al., 2009). The properties of the GFRP as well as those of the core material are provided in Table II, where E_{xx} is the axial Young’s modulus, E_{xy} is the transverse Young’s modulus, G_{xy} is the in-plane shear modulus, v_{xy} is the Poisson’s ratio, u_f is the fiber volume fraction, w_f is the fiber weight fraction and ρ is the density.

The size growth and the decreasing cost of carbon fibers have made them quite popular in the last 10–15 years. Carbon fibers present an exceptional combination of high stiffness, high strength and low density. Overall, they have much better performance than glass fibers, but yet they are of limited use because of their higher cost. In this study, the material properties of CFRP were obtained by applying formulas of composite materials theory.

<table>
<thead>
<tr>
<th>Material number</th>
<th>Material</th>
<th>Layer thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gel</td>
<td>0.68</td>
</tr>
<tr>
<td>2</td>
<td>Random material</td>
<td>0.59</td>
</tr>
<tr>
<td>3</td>
<td>Triaxial material</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>Balsa core</td>
<td>$0.005 \times$ chord length c</td>
</tr>
<tr>
<td>5</td>
<td>Uniaxial material</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Table I. Composite laminate layup identification and thickness

![Figure 7. Layer order and orientation for: (a) the laminate structure of the spar-cap and (b) the sandwich structure of the shear-web](image)
(Zimmer and Cost, 1970) due to a lack of experimental data similar to those used for the GFRP model. For our calculations, we used the properties of AS4-D carbon fibers type and the same epoxy-based as the one used in the GFRP model. The properties of CFRP are shown in Table III.

In recent years, aramid fibers are widely used, replacing metallic and inorganic fibers in composite structures in aerospace, boat manufacturing and automobile industry. Aramid fibers not only have better material properties than steel and glass fibers for the same weight level, but also maintain these properties at high temperatures, since they have high thermal insulation and fire resistance. Furthermore, aramid fiber-reinforced polymers are proven to have much higher tensile strength and better resistance to fatigue from polymers with glass fibers (Praveen Shaju et al., 2013; Mutkule et al., 2015). Despite the positive characteristics that they present and their wide range of applications, the possibility of using them in WTBs manufacturing has not yet been examined. This paper investigates their buckling capacity, compared to glass and carbon fiber-reinforced polymers, as they were presented above.

Aramid presents many valuable properties, depending on the treatment and the application in hand. One of its most popular derivatives is Kevlar, which is the trade name for aramid. There are many Kevlar-fiber categories like Kevlar 29, Kevlar 49, Kevlar 68, Kevlar 119, Kevlar 129 and Kevlar 149. Kevlar 149 is one of the most recent categories in the Kevlar family. They have much higher Young’s modulus than Kevlar fibers 29 and 49, while having approximately the same density and diameter, but a very low sensitivity to moisture (they are mainly used in aerospace). Because of these properties, Kevlar fibers 149 were chosen to be used for the FRP of the internal load-carrying box girder. The mechanical properties of AFPR model were obtained by applying the same formulas used in the CFRP model and they are shown in Table IV.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Uniaxial (No. 5)</th>
<th>Triaxial (No. 3)</th>
<th>Random (No. 2)</th>
<th>Balsa (No. 4)</th>
<th>Gel (No. 1)</th>
<th>Epoxy adhesive</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{xx} (GPa)</td>
<td>31.00</td>
<td>24.20</td>
<td>9.65</td>
<td>2.07</td>
<td>3.44</td>
<td>2.76</td>
</tr>
<tr>
<td>E_{yy} (GPa)</td>
<td>7.59</td>
<td>8.97</td>
<td>9.65</td>
<td>2.07</td>
<td>3.44</td>
<td>2.76</td>
</tr>
<tr>
<td>G_{xy} (GPa)</td>
<td>3.52</td>
<td>4.97</td>
<td>3.86</td>
<td>0.14</td>
<td>1.38</td>
<td>1.10</td>
</tr>
<tr>
<td>$ν_{xy}$</td>
<td>0.31</td>
<td>0.39</td>
<td>0.30</td>
<td>0.22</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>u_f</td>
<td>0.40</td>
<td>0.40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>u_f</td>
<td>0.61</td>
<td>0.61</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$ρ$ (g/cm3)</td>
<td>1.70</td>
<td>1.70</td>
<td>1.67</td>
<td>0.14</td>
<td>1.23</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Table II. GFRP material properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Uniaxial</th>
<th>Triaxial</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{xx} (GPa)</td>
<td>146.00</td>
<td>65.00</td>
<td>62.47</td>
</tr>
<tr>
<td>E_{yy} (GPa)</td>
<td>18.53</td>
<td>22.50</td>
<td>62.47</td>
</tr>
<tr>
<td>G_{xy} (GPa)</td>
<td>9.41</td>
<td>13.46</td>
<td>24.19</td>
</tr>
<tr>
<td>$ν_{xy}$</td>
<td>0.27</td>
<td>0.29</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table III. CFRP material properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Uniaxial</th>
<th>Triaxial</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{xx} (GPa)</td>
<td>113</td>
<td>50.87</td>
<td>48.88</td>
</tr>
<tr>
<td>E_{yy} (GPa)</td>
<td>15.24</td>
<td>18.28</td>
<td>48.88</td>
</tr>
<tr>
<td>G_{xy} (GPa)</td>
<td>7.46</td>
<td>10.72</td>
<td>18.63</td>
</tr>
<tr>
<td>$ν_{xy}$</td>
<td>0.27</td>
<td>0.34</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table IV. AFPR material properties
3. Analysis results

3.1 Finite element analysis

We initially present the analysis results for the model considered: the E-GFRP model without curvature at the transition area between the spar-cap and the shear-web, where the load is simulated with uniform pressure vertically spaced at the upper spar-cap. We performed both eigenvalue and nonlinear buckling analysis for the baseline case as well as for all the other cases.

Eigenvalue analysis (linear buckling analysis) offers a quick estimate about the response of the model, while a rough value of the critical buckling load is calculated. The critical buckling load was estimated through linear analysis equal to 12.47 KPa. However, no information regarding the size of deformations or the post-buckling response of the model can be derived from the linear analysis. Moreover, linear analysis is insufficient for reaching precise conclusions because it is based on the assumption of small displacements and does not take into account the influence of nonlinear phenomena (large deformations, imperfections, etc.). The most realistic behavior of the model can be obtained from the nonlinear buckling analysis. For the latter, we took into account the geometrical nonlinearity (where changes in geometry due to large deformations significantly affect the relationship between the applied load and the displacement) and the results are presented below.

An early conclusion based on the deformed model (Figure 8) is that the global deflection of the model is not considerably affected by local buckling. In a closer look, we can see that the local buckling area lies in the compressed spar-cap, near the root. Also, shear buckling occurs at the same position in the shear-webs. In Figure 9, the Brazier effect (Theotokoglou and Balokas, 2015a, b) of the blade is confirmed by the deformed shape, as the ovalization of the cross-section during buckling is apparent.

Figure 8. Global and local deformation of the model after the load imposition

Linear and nonlinear buckling analysis
The maximum local deformation (in the Y-direction) of the compressed spar-cap is detected on D-spot in Figure 10, while the maximum local deformation of shear-web (in the X-direction) occurs on Z-spot in Figure 11. The equilibrium paths are shown in Figures 12 and 13. The curves exhibit linear behavior (pre-buckling phase) up to 8.41 KPa (critical buckling load), where the bifurcation point A is reached. After this point, the model has stable nonlinear response, up to 13 KPa (point C) (post-buckling phase).

Figure 9. Cross-section deformed shape

Notes: (a) The model cross-section just before the local buckling; and (b) the cross-section ovalization

Figure 10. Spar-cap local buckling and von Mises stresses distribution

Figure 11. Displacements in the X-direction (in mm)
3.2 Cross-section geometry parameter
We compare two models based on the GFRP material properties, with uniform pressure on the spar-cap and the geometrical discrepancies described in Section 2.1. From the load-displacement paths (Figure 14), we can see that the two models have similar response both in the pre-buckling and the post-buckling phase, with equal stiffness and about the same critical buckling load. The deformed shape of both models is identical in terms of position and number of folds.
However, the post-buckling path for the model with the curvature at the transition area has higher inclination and the size of deformations is smaller.

3.3 Loading imposition parameter

Based on specific examples of the literature (Sorensen et al., 2004; Gaudern and Symons, 2010; Chen et al., 2014), we examined four different ways of the loading simulation, which were described in Section 2.2. More specifically, except uniform pressure it is imposed: linear load in the middle of upper spar-cap of maximum value \(P_{\text{max}} = 6.32 \) KN/m, concentrated load at the free end of the model of maximum value \(P_{\text{max}} = 60 \) KN and two concentrated loads of equal magnitude, with maximum value 63 KN each. To allow comparison between pressure (KPa), linear load (KN/m) and concentrated loads (KN), we convert everything into equivalent bending moment at the support of the model for each load step.

From Figure 15, it is clear that the models have similar behavior both in the pre-buckling and post-buckling phase. The pre-buckling paths are in general very close, while they are identical for the cases of the linear load and the two concentrated loads. However, there are differences in the critical buckling load, where the maximum value emerged when we imposed uniform pressure. On the other hand, the critical load for the concentrated load at the free-end case is closer to the average value, while the size of the deformations is smaller. It is noted that there were no significant savings regarding computational efficiency in any of the examined cases.

Based on the above and the relatively small deviations observed, it can be deduced that the different loading simulations may indeed affect the distribution of the stresses across the model but they do not affect crucially its load-carrying capacity and response. Therefore, we can neither recommend nor exclude any of these load simulation methods based on our results.

3.4 Material properties parametric analysis

Comparison between glass, carbon and Kevlar-fiber models. The fiber-reinforced composite material properties are the last and most important analysis parameters in our study. The equilibrium paths (Figure 16) indicate that the CFRP model has more than twice the buckling capacity of the GFRP model and also much higher stiffness (pre-buckling path with higher slope). This was expected, due to the remarkable properties of carbon. The AFRP model also has high critical buckling load and stiffness in comparison with the GFRP. In addition, a significant restriction of deflections is observed prior the bifurcation point.

However, the AFRP model exhibits unstable post-buckling behavior, as it is indicated by the displacement values after the bifurcation point is reached. This instability can also be...
observed in the deformed shape of the model, as multiple deformation peaks emerge during loading history.

Comparison between hybrid models of GFRP and CFRP. The need to further increase the strength-to-weight ratio and the stiffness-to-weight ratio of the blades has turned wind turbine industry toward hybrid structures. Hybrid models are likely to have higher strength and lower density compared to blades that are exclusively constructed by glass fibers. In this section, the following three cases are investigated: substitution of the GFRP by CFRP material in the shear-webs (the GFRP_spar-cap/CFRP_shear-web model), substitution of the GFRP by CFRP material in spar-caps (the CFRP_spar-cap/GFRP_shear-web model) and substitution of the GFRP by CFRP material in the uniaxial layers in spar-caps (the CFRP uniaxial in spar-cap model).

The nonlinear curves (Figure 17) indicate that the GFRP_spar-cap/CFRP_shear-web has almost the same response as the GFRP model. The hybrid model has a slightly greater stiffness. The CFRP_spar-cap/GFRP shear-web model has exactly the same pre-buckling path as the CFRP model up to the critical buckling load. However, this model does not have an increasing post-buckling section (stiffening). The lack of sufficient post-buckling strength is a significant disadvantage. The most reasonable combination is that of the carbon fibers placed only in the uniaxial layers of the spar-caps. In this case, the hybrid model is found to have a not only sufficient combination of load-carrying capacity and post-buckling strength, but also minimum use of the expensive carbon material. This conclusion is also obtained in relevant studies of the literature (Ashwill, 2009; Cox and Echtermeyer, 2012).
Comparison between hybrid models of CFRP and AFRP. The response of hybrid models constructed by carbon and aramid fibers was also investigated. In particular, the following cases were studied: the substitution of the CFRP material by the AFRP material in spar-caps (the AFRP_spar-cap/CFRP_shear-web model) and the substitution of the CFRP by AFRP material in shear-webs (the CFRP_spar-cap/AFRP_shear-web model).

The AFRP_spar-cap/CFRP_shear-web model has the same curve with the AFRP model, without the unstable post-buckling behavior that the latter exhibits (Figure 18). This result is characterized as a positive contribution. The CFRP_spar-cap/AFRP_shear-web model has exactly the same response, stiffness and stable post-buckling behavior as the CFRP model (their load-displacement paths are identical). Furthermore, the deformed models differ slightly (Figure 19). Thus, the following useful conclusion results: when CFRP material is used in the spar-caps and AFRP material in shear-webs, a model can be created with the same load-carrying capacity and buckling strength as the CFRP model, with significant savings in cost and weight (the Kevlar fibers 149 are cheaper and lighter than carbon fibers) (Figures 18 and 19).

Comparison between hybrid models GFRP and AFRP. Finally, the response of hybrid models, constructed by glass and aramid fibers, was investigated. The following cases were studied: the replacement of the AFRP material by the GFRP material in the spar-caps (the GFRP_spar-cap/AFRP_shear-web model), the substitution of the GFRP by AFRP material in the spar-caps (the AFRP_spar-cap/GFRP_shear-web model) and replacement of the GFRP by AFRP material in the uniaxial layers of the spar-caps (the AFRP_uni-axial in spar-cap model).

The GFRP_spar-cap/AFRP_shear-web model has slightly higher stiffness and critical buckling load than the GFRP model (Figure 20). The AFRP_spar-cap/GFRP_shear-web model exhibits sufficient load-carrying capacity, without the unstable post-buckling behavior observed at the AFRP model analysis. The load-displacement curve for the AFRP_uni-axial in spar-cap model is in the middle of the rest, presenting a satisfactory combination of load-carrying capacity and post-buckling strength. As a total conclusion from all the hybrid cases considered, it should be noted that the response and the stiffness of the hybrid models are defined by the spar-cap material.

4. Conclusions
This paper studies the buckling capacity of the internal support of WTBs, by performing parametric analyses with respect to geometry, loading and material properties. The nonlinear buckling analysis results are consistent with a related study of the literature (Sorensen et al., 2004). On the other hand, the eigenvalue analysis was proved extremely
conservative, since the critical buckling load values are overestimated in all examined cases. The above confirms the necessity of the nonlinear analysis, despite the increased computational cost required. Nonlinear analysis leads to more realistic results and should always be performed in cases where changes in the geometry, due to large deformations, significantly affect the relationship between the applied load and the displacement.

The comparison between the GFRP, CFRP and AFRP models showed that the CFRP model has greater stiffness and strength compared with the GFRP model and approximately double critical buckling load. Positive results are obtained by the use of Kevlar fibers, since the stiffness and the critical buckling load of the AFRP model are quite

Figure 19.
Local deformations and von Mises stress distribution at the critical buckling load for: (a) the CFRP model and (b) the CFRP_spar-cap/AFRP_shear-web model

Figure 20.
Load-displacement paths for the hybrid models of GFRP and AFRP
larger than those of the GFRP model. However, the unstable post-buckling behavior of the AFRP model is negatively evaluated. This instability is eliminated immediately, in cases where aramid fibers were used in conjunction with glass or carbon fibers in hybrid models. This is a strong prompt toward further research in the use of Kevlar fibers in WTB. In addition, it is of great interest that if the CFRP material is used in the spar-caps and the AFRP material in shear-webs (instead of CFRP material), a model can be produced with the same strength and buckling capacity as the CFRP material, but significantly cheaper and lighter, since the Kevlar 149 fibers have a lower cost and weight.

This study offers a clear perspective not only about the buckling capacity of the blade and its sensitivity when the material parameters are changed, but also about the post-buckling behavior and strength of the models. Nevertheless, there is space for improvement in the FEM simulation (e.g. more realistic configuration of the geometrical model, without the assumption of double symmetry at the X and Y axes, with more detailed ply-drop design in the transition area, etc.). Further studies should also include material nonlinearity, by testing various models of plasticity for the composite fiber-reinforced polymers. Moreover, the significant advantages that appeared to arise from the use of aramid fibers should be further tested, in order to examine their response in experimental models.

References

Corresponding author
Efstathios E. Theotokoglou can be contacted at: stathis@central.ntua.gr

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com