To read this content please select one of the options below:

Performance modeling and optimization for complex repairable system of paint manufacturing unit using a hybrid BFO-PSO algorithm

Amit Kumar (Department of Mechanical Engineering, Seth Jai Parkash Mukand Lal Institute of Engineering and Technology, Yamunanagar, India)
Vinod Kumar (Department of Mechanical Engineering, National Institute of Technology Kurukshetra, Kurukshetra, India)
Vikas Modgil (Department of Mechanical Engineering, DeenBandhu Chhotu Ram University of Engineering and Technology, Sonipat, India)

International Journal of Quality & Reliability Management

ISSN: 0265-671X

Article publication date: 5 August 2019




The purpose of this paper is to optimize the performance for complex repairable system of paint manufacturing unit using a new hybrid bacterial foraging and particle swarm optimization (BFO-PSO) evolutionary algorithm. For this, a performance model is developed with an objective to analyze the system availability.


In this paper, a Markov process-based performance model is put forward for system availability estimation. The differential equations associated with the performance model are developed assuming that the failure and repair rate parameters of each sub-system are constant and follow the exponential distribution. The long-run availability expression for the system has been derived using normalizing condition. This mathematical framework is utilized for developing an optimization model in MATLAB 15 and solved through BFO-PSO and basic particle swarm optimization (PSO) evolutionary algorithms coded in the light of applicability. In this analysis, the optimal input parameters are determined for better system performance.


In the present study, the sensitivity analysis for various sub-systems is carried out in a more consistent manner in terms of the effect on system availability. The optimal failure and repair rate parameters are obtained by solving the performance optimization model through the proposed hybrid BFO-PSO algorithm and hence improved system availability. Further, the results obtained through the proposed evolutionary algorithm are compared with the PSO findings in order to verify the solution. It can be clearly observed from the obtained results that the hybrid BFO-PSO algorithm modifies the solution more precisely and consistently.

Research limitations/implications

There is no limitation for implementation of proposed methodology in complex systems, and it can, therefore, be used to analyze the behavior of the other repairable systems in higher sensitivity zone.


The performance model of the paint manufacturing system is formulated by utilizing the available uncertain data of the used manufacturing unit. Using these data information, which affects the performance of the system are parameterized in the input failure and repair rate parameters for each sub-system. Further, these parameters are varied to find the sensitivity of a sub-system for system availability among the various sub-systems in order to predict the repair priorities for different sub-systems. The findings of the present study show their correspondence with the system experience and highlight the various availability measures for the system analyst in maintenance planning.



Kumar, A., Kumar, V. and Modgil, V. (2019), "Performance modeling and optimization for complex repairable system of paint manufacturing unit using a hybrid BFO-PSO algorithm", International Journal of Quality & Reliability Management, Vol. 36 No. 7, pp. 1212-1228.



Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles