To read the full version of this content please select one of the options below:

Enhancing prioritisation of technical attributes in quality function deployment

Zafar Iqbal (School of Engineering & Advanced Technology, Massey University, Palmerston North, New Zealand)
Nigel Peter Grigg (School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand)
K. Govindaraju (Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand)
Nicola Marie Campbell-Allen (School of Engineering & Advanced Technology, Massey University, Palmerston North, New Zealand)

International Journal of Productivity and Performance Management

ISSN: 1741-0401

Article publication date: 2 March 2015

Abstract

Purpose

Quality function deployment (QFD) is a planning methodology to improve products, services and their associated processes by ensuring that the voice of the customer has been effectively deployed through specified and prioritised technical attributes (TAs). The purpose of this paper is two ways: to enhance the prioritisation of TAs: computer simulation significance test; and computer simulation confidence interval. Both are based on permutation sampling, bootstrap sampling and parametric bootstrap sampling of given empirical data.

Design/methodology/approach

The authors present a theoretical case for the use permutation sampling, bootstrap sampling and parametric bootstrap sampling. Using a published case study the authors demonstrate how these can be applied on given empirical data to generate a theoretical population. From this the authors describe a procedure to decide upon which TAs have significantly different priority, and also estimate confidence intervals from the theoretical simulated populations.

Findings

First, the authors demonstrate not only parametric bootstrap is useful to simulate theoretical populations. The authors can also employ permutation sampling and bootstrap sampling to generate theoretical populations. Then the authors obtain the results from these three approaches. qThe authors describe why there is a difference in results of permutation sampling, bootstrap and parametric bootstrap sampling. Practitioners can employ any approach, it depends how much variation in FWs is required by quality assurance division.

Originality/value

Using these methods provides QFD practitioners with a robust and reliable method for determining which TAs should be selected for attention in product and service design. The explicit selection of TAs will help to achieve maximum customer satisfaction, and save time and money, which are the ultimate objectives of QFD.

Keywords

Citation

Iqbal, Z., Grigg, N.P., Govindaraju, K. and Campbell-Allen, N.M. (2015), "Enhancing prioritisation of technical attributes in quality function deployment", International Journal of Productivity and Performance Management, Vol. 64 No. 3, pp. 398-415. https://doi.org/10.1108/IJPPM-10-2014-0156

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited