To read this content please select one of the options below:

Demand forecasting accuracy in the pharmaceutical supply chain: a machine learning approach

Luh Putu Eka Yani (Department of Industrial Engineering, Sampoerna University, Jakarta, Indonesia)
Ammar Aamer (College of Professional Studies, Northeastern University, Toronto, Canada)

International Journal of Pharmaceutical and Healthcare Marketing

ISSN: 1750-6123

Article publication date: 30 November 2022

Issue publication date: 22 March 2023




Demand foresting significantly impacts supply chain (SC) design and recovery planning. The more accurate the demand forecast, the better the recovery plan and the more resilient the SC. Given the paucity of research about machine learning (ML) applications and the pharmaceutical industry’s need for disruptive techniques, this study aims to investigate the applicability and effect of ML algorithms on demand forecasting. More specifically, the study identifies machine learning algorithms applicable to demand forecasting and assess the forecasting accuracy of using ML in the pharmaceutical SC.


This research used a single-case explanatory methodology. The exploratory approach examined the study’s objective and the acquisition of information technology impact. In this research, three experimental designs were carried out to test training data partitioning, apply ML algorithms and test different ranges of exclusion factors. The Konstanz Information Miner platform was used in this research.


Based on the analysis, this study could show that the most accurate training data partition was 80%, with random forest and simple tree outperforming other algorithms regarding demand forecasting accuracy. The improvement in demand forecasting accuracy ranged from 10% to 41%.

Research limitations/implications

This study provides practical and theoretical insights into the importance of applying disruptive techniques such as ML to improve the resilience of the pharmaceutical supply design in such a disruptive time.


The finding of this research contributes to the limited knowledge about ML applications in demand forecasting. This is manifested in the knowledge advancement about the different ML algorithms applicable in demand forecasting and their effectiveness. Besides, the study at hand offers guidance for future research in expanding and analyzing the applicability and effectiveness of ML algorithms in the different sectors of the SC.



Yani, L.P.E. and Aamer, A. (2023), "Demand forecasting accuracy in the pharmaceutical supply chain: a machine learning approach", International Journal of Pharmaceutical and Healthcare Marketing, Vol. 17 No. 1, pp. 1-23.



Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles