To read this content please select one of the options below:

Towards ubiquitous human gestures recognition using wireless networks

Mustafa S. Aljumaily (Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, USA)
Ghaida A. Al-Suhail (Department of Computer Engineering, University of Basrah, Basrah, Iraq)

International Journal of Pervasive Computing and Communications

ISSN: 1742-7371

Article publication date: 6 November 2017




Recently, many researches have been devoted to studying the possibility of using wireless signals of the Wi-Fi networks in human-gesture recognition. They focus on classifying gestures despite who is performing them, and only a few of the previous work make use of the wireless channel state information in identifying humans. This paper aims to recognize different humans and their multiple gestures in an indoor environment.


The authors designed a gesture recognition system that consists of channel state information data collection, preprocessing, features extraction and classification to guess the human and the gesture in the vicinity of a Wi-Fi-enabled device with modified Wi-Fi-device driver to collect the channel state information, and process it in real time.


The proposed system proved to work well for different humans and different gestures with an accuracy that ranges from 87 per cent for multiple humans and multiple gestures to 98 per cent for individual humans’ gesture recognition.


This paper used new preprocessing and filtering techniques, proposed new features to be extracted from the data and new classification method that have not been used in this field before.



Aljumaily, M.S. and Al-Suhail, G.A. (2017), "Towards ubiquitous human gestures recognition using wireless networks", International Journal of Pervasive Computing and Communications, Vol. 13 No. 4, pp. 408-418.



Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles