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Abstract

Purpose – This paper aims to provide and empirically test a conceptual model in which artificial intelligence
(AI), knowledge management processes (KMPs) and supply chain resilience (SCR) are simultaneously
considered in terms of their reciprocal relationships and impact on manufacturing firm performance (MFP).
Design/methodology/approach – In the study, six hypotheses have been developed and tested through an
empirical survey administered to 120 senior executives of Italian manufacturing firms. The data analysis has
been carried out via the partial least squares structural equation modelling approach, using the Advanced
Analysis for Composites 2.0 variance-based software program.
Findings – Using a conceptual model validated using an empirical survey, the study sheds light on the
relationships between AI, KMPs and SCR, as well as their impacts on MFP. In particular, the authors show
the positive effects of the adoption of AI on KMPs, as well as the influence of KMPs on SCR and MFP. Finally,
the authors demonstrate that KMPs act as a mediator through which AI affects SCR and MFP.
Practical implications – This study highlights the critical role of KMPs for manufacturing firms that can
deploy AI to stimulate KMPs and through attaining a high level of the latter might succeed in enhancing both
their SCR and MFP.
Originality/value –This study demonstrates that manufacturing firms interested in properly applying AI to
ameliorate their performance and resilience must carefully consider KMPs as a mediator mechanism.
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1. Introduction
Increasing uncertainty and turbulent contexts might have significant repercussions on the
manufacturing industry in terms of mandatory closures, logistics bottlenecks, supply
difficulties and volatility in consumption trends (Ardolino et al., 2022). Indeed, in recent
times, numerous research studies have demonstrated how the success and survival of
manufacturing firms are closely linked to their ability to 1) embrace advanced digital
technologies, such as artificial intelligence (AI) (Eloranta et al., 2021; Mohapatra et al., 2021;
van Oorschot et al., 2022); 2) implement knowledge management processes (KMPs) capable
of identifying the necessary knowledge and disseminating it within the organisation (Leoni,
2015; Sutopoh et al., 2021); and 3) put in place supply chain resilience (SCR) strategies to
maintain satisfactory levels of performance in the short, medium and long terms (Belhadi
et al., 2021a). In fact, these three elements (AI, KMPs and SCR) – individually considered –
positively affect firm performance (Jallow et al., 2020; Li et al., 2017; Tan and Wong, 2015).
However, it is worth noting that this effect becomes even more evident if these elements are
considered in pairs. In this vein, for example, Modgil et al. (2021) and Yu et al. (2019) have
demonstrated how the adoption of AI for SCR ensured business continuity and improved
firm performance before and during COVID-19, while Ciampi and Rialti (2019) observed
that AI adoption in knowledge-intensive manufacturing firms may increase firms’
performance.

However, to the best of the authors’ knowledge, despite the impact that these elements
(i.e. AI, KMPs and SCR) can have on manufacturing firms, there are no studies that
investigate these same elements in a holistic and integratedway, providing evidence on their
reciprocal influences and related impacts on manufacturing firm performance (MFP).
Indeed, previous research offers only a partial view of the AI, KMPs and SCR effects on
performance by exclusively focussing, for example, on financial aspects (e.g. Li et al., 2017;
Yu et al., 2019).

Thus, as emphasised by Al Mansoori et al. (2021) and Umar et al. (2021), these subjects
require further investigation. Moreover, as recently recommended by practitioners
(e.g. Capgemini, 2020; World Manufacturing Foundations, 2020, 2021), AI, KMPs and SCR
should be considered jointly so as to be able to determine – with greater accuracy – the
(positive) effects that they can have in terms of MFP.

Therefore, we aim to answer these calls by proposing a conceptual model in which AI,
KMPs and SCR are simultaneously considered in terms of their reciprocal relationships, as
well as their impacts on MFP. Moreover, the paper will practically test the proposed model to
verify its empirical validity. Accordingly, we developed and tested six hypotheses through a
survey administered to 120 senior executives of Italian manufacturing firms. For data
analysis, we adopt the partial least squares structural equation modelling approach.

The results show the positive effects of the adoption of AI on KMPs, as well as the
influence of KMPs on SCR and MFP. Finally, results demonstrate that KMPs acts as a
mediator through which AI affects SCR and MFP.

This research contributes to theory and practice in several ways. In fact, our findings
provide a model that can explain the relationships between AI, KMPs and SCR, as well as
their impacts onMFP.Moreover, by demonstrating that KMPs act as amediatingmechanism
through which AI benefits SCR and MFP, we provide manufacturing firms’ managers with
indications of the importance that KMPs – supported by AI – have in terms of performance
and resilience of the firm and its supply chain (SC).

After this introduction, section 2 presents the proposed research model and hypotheses.
Section 3 reports the research method. Section 4 depicts the results, while section 5 is devoted
to the discussion, in which both the theoretical and practical implications of the study are
highlighted. Finally, section 6 presents the conclusions, limitations and future research
avenues.
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2. Conceptual model and hypothesis development
The following sub-sections are devoted to developing specific hypotheses at the basis of the
proposed investigation. The assumed relationships among the studied constructs are
graphically shown in Figure 1, representing the conceptual model we will test through our
investigation.

2.1Artificial intelligence impacts on knowledgemanagement processes,manufacturing firm
performance and supply chain resilience
Due to the ever-increasing amount of data and information collected by firms and fed into
their processes, AI has attracted increased interest over the last decade by scholars and
practitioners (Gao et al., 2021). AI can be briefly described as computers’ ability to perform
cognitive functions, such as perceiving, reasoning, learning and problem-solving, that are
usually associated with human minds (Bawack et al., 2021). Practically speaking, AI refers to
using computers to imitate the human brain’s reasoning, learning, planning and other
thinking activities, thus solving complex problems that only human experts could previously
tackle (Lei andWang, 2020). In particular, AI enables machines to learn, acquire, process and
use knowledge to perform tasks, revealing or unlocking knowledge that can be delivered to
humans to improve decision-making processes within organisations (Camarillo et al., 2018;
Grzonka et al., 2018; Vajpayee and Ramachandran, 2019). In other words, AI can extract new
knowledge from vast quantities of data, portraying complex mappings as a basis for human
decision-making (Paschen et al., 2020). Hence, according to Bencsik (2021), there is a close
mutual interaction between KM and AI: the former makes the understanding of knowledge
possible, while the latter provides the tools to expand and use knowledge, as well as to create
new knowledge in a way that was unimaginable before (Haenlein and Kaplan, 2019; Lu et al.,
2018). In this vein, as emphasised by Al Mansoori et al. (2021) in their systematic literature
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review, modern organisations increasingly rely on AI mechanisms to enhance KMPs and
performance thanks to their ability to 1) inductively determine relationships and trends in
firms’ knowledge repositories (i.e. combining existing knowledge) to create new knowledge;
2) help in the search for knowledge; and 3) disseminate knowledge to thosewho need it. Thus,
AI “can help push [. . .] knowledge management” (Liebowitz, 2001, p. 4), making KMPs more
effective (Mittal and Kumar, 2019). From this, we derive

H1. AI has a positive effect on KMPs.

Furthermore, as noted by Butler et al. (2021) in their systematic literature review, AI can
improve firms’ productivity by automating data management processes and eliminating the
need for intermediaries. Hence, AI can ameliorate network communication, and in turn, this
will help foster innovation within an organisation. Accordingly, Jallow et al. (2020) point out
that AI adoption allows firms to gain a competitive edge and enhance their performance by
allowing better productivity, profitability and efficiency. Explicitly referring to
manufacturing firms, AI application allows for real-time decision-making and performance
improvement by enabling predictivemaintenance (Chen et al., 2021), enhanced quality control
(Chiarini and Kumar, 2021) and improved safety (Pillai et al., 2020). Based on the above, we
derive the following hypothesis:

H2. AI has a positive effect on MFP.

Lastly, according to McKinsey [1], more and more companies have adopted digitalisation in
general and AI in particular to mitigate the effects of disruptive events. For example, during
the pandemic, numerous companies had to deploy digital technologies to enhance their SCR
andmaintain satisfactory levels of operational performance (Belhadi et al., 2021a; Mohapatra
et al., 2021). In this vein, AI can provide the critical capability to devise better control
mechanisms and identify areas of disruption because it can help firms in gathering data and
processing information more efficiently and thus facilitating firms’ resource orchestration
and information processing, ameliorating the real-time coordination and collaboration
processes within their SC (Gupta et al., 2020; Modgil et al., 2021; Wamba et al., 2020a). This
represents the base onwhich firms can build and promote SCR (Belhadi et al., 2021b; Ruel and
El Baz, 2021; Yao and Fabbe-Costes, 2018; Wamba et al., 2020b), understood as the capability
to anticipate and overcome SC disruptions (Pettit et al., 2013; Rice and Caniato, 2003; Sheffi,
2005). In this respect, AI can be considered a crucial enabler for strengthening SCR by
improving the collaboration between contractors and suppliers, simplifying operations
through higher levels of problem-solving speed and accuracy (Ivanov and Dolgui, 2020;
Modgil et al., 2021; Schniederjans et al., 2020; Wamba et al., 2021). Based on the above, we
derive the following:

H3. AI has a positive effect on SCR.

2.2 Knowledge management processes and manufacturing firm performance
According to the knowledge-based view (KBV) of the firm (Grant, 1996), knowledge can be
considered the most valuable resource of a firm, the only enduring source of competitive
advantage that can improve a firm’s decision-making capacity and, consequently, its effective
action (Alavi and Leidner, 2001; Davenport and Klahr, 1998; Knight and Howes, 2012; Nonaka
and Takeuchi, 1995; Paniccia, 2018). Therefore, KM is seen by academics, practitioners and
policymakers as one of the most essential strategic processes of any firm (Grant, 1996; OECD,
2004). Specifically, KM “is the process of creating value from an organisation’s intangible
assets” (Liebowitz, 2004, p. 1). Consequently, increased attention has been paid to identifying
KMPs critical to the development and exploitation of the knowledge needed to create
competitive advantage (Anand et al., 2010; Linderman et al., 2010). In this vein – despite the
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small differences that still characterise theKM literature in terms of the number and labelling of
KMPs – it is possible to state that KM encompasses five main distinct but interdependent
processes – (1) acquiring, (2) creating, (3) using/applying, (4) archiving/storing and updating
and (5) sharing/transferring (Alavi and Leidner, 2001; Heisig, 2009). These KMPs – as
demonstrated by both qualitative and quantitative KM studies – have to be properly adopted
by firms in order to improve their organisational (e.g. Choi and Lee, 2003; Khalifa et al., 2008;
Zack et al., 2009), financial (e.g. Darroch andMcNaughton, 2003) andmarket (e.g. Hussinki et al.,
2017) performances. In the current manufacturing context, which is characterised by a
paradigm shift, manufacturing firms are increasingly focusing onmanaging knowledge assets
instead of managing physical assets to improve their performance (Gunasekaran and Ngai,
2007). Consequently, as demonstrated by Tan and Wong (2015), manufacturing firms are
realising the importance of KM and adopting KMPs because they are able to positively impact
their performance, bringing “a lot of benefits such as getting updated information for
production, solving production problems in a shorter time, and improving product and process
quality” (p. 825) and allowing managers “to come out with a more effective strategy to acquire
the utmost benefits for their companies.” (p. 820). Based on this, we derive the following
hypothesis:

H4. KMPs has a positive effect on MFP.

2.3 Knowledge management processes and supply chain resilience
As stated before, for firms, managing the knowledge they possess, acquire, or create is crucial
to being competitive and surviving in their environment (Grant, 1996). This is particularly
true in the SC context because SCs can be viewed as cradles of knowledge, involving multiple
autonomous actors with varying backgrounds (Samuel et al., 2011). Thus, according to
Desouza et al. (2003), the effective use of KMPs allows all the SC actors to better align their
objectives and interests (Li et al., 2012) and devise corrective actions before a risk event occurs
(Ellegaard, 2008; J€uttner and Maklan, 2011), which can ultimately affect SC performance
(Sangari et al., 2015). In particular, as demonstrated by Umar et al. (2021), the SC’s ability to
properly acquire, share and use knowledge is crucial to guaranteeing that the SC can prepare
and respond to disasters, minimising its vulnerability (Ellegaard, 2008; Kov�acs and Spens,
2007; J€uttner andMaklan, 2011), reducing the time required to deliver products from one actor
to another (Dove, 1999) and enhancing the visibility and alignment among SC actors (Barratt
and Oke, 2007). By doing so, KMPs work to achieve and enhance SCR (Ali et al., 2021;
Blackhurst et al., 2011; Kumar and Anbanandam, 2019). Hence, we derive the following
hypothesis:

H5. KMPs has a positive effect on SCR.

2.4 Supply chain resilience and manufacturing firm performance
SCR is an indispensable capability in times of crisis, as already demonstrated by numerous
studies (e.g. El Baz and Ruel, 2021; Nikookar and Yanadori, 2021; Ozdemir et al., 2022; Shen
and Sun, 2021). Indeed, SCR concerns the ability to recover performance after having
absorbed disruption effects (Hosseini et al., 2019; Spiegler et al., 2012). In particular, SCR
enables firms tominimise the negative effects of disruptions, maintain business continuity by
optimising resources (Roehrich et al., 2014) and maintain the supply to customers (Ambulkar
et al., 2016). In this vein, Li et al., 2017 have emphasised the positive financial outcomes
derived from the implementation of SCR because it allows a firm to respondmore quickly and
effectively to disruptions concerning competitors, increasing the firm’s market share,
goodwill and profitability. Consequently, SCR can have a direct impact on firms’ performance
by ensuring consistent service and stock availability and improving the ability to face
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various disruption threats (Altay et al., 2018; Ambulkar et al., 2016; Azevedo et al., 2013;
Hohenstein et al., 2015; Liu and Lee, 2018; Liu et al., 2018). Drawing on the above, we proposed
the following hypothesis:

H6. SCR has a positive effect on MFP.

3. Methodology
3.1 Empirical context and data collection
We collected data through a questionnaire survey to test our hypotheses. In particular, we
carried out our analysis according to a web survey, which is much more cost-effective and
takes less time as compared to a paper-based survey (Couper, 2000). Moreover, web surveys
do not allow for responses to be manually transferred into a database, avoiding interviewer
bias (Dillman et al., 2014). We randomly selected 1,096 Italian manufacturing firms. A pilot
study undertaken by the authors with some firms has revealed that their senior executives
can influence initiatives related to AI adoption, are well-informed regarding the KMPs and
also have a good understanding of their firms’ performance and SCR. Therefore, we
considered the senior executives of each firm to be the primary data source for the empirical
survey, along the lines of prior studies in operations and SC management (e.g. Flynn
et al., 2010).

We first sent an invitation to the identified respondents, together with a cover letter
explaining the motivations and objectives of our research. Then, we sent the questionnaire to
the respondents who accepted the invitation. Finally, after discarding incomplete
questionnaires, we obtained 120 useful questionnaires, which yielded a response rate of
11% that, according to Dillman et al. (2014), can be deemed acceptable. Next, we conducted a
series of tests to verify the validity of the sample for data analysis purposes. First, we
conducted a statistical power analysis pre-test (Cohen, 1988; Faul et al., 2009) using G*power
software with a medium effect size (f 2 5 0.150), a statistical power level of 0.95, three
predictors (i.e. AI adoption, KMPs and SCR) and a confidence level of 0.01. The power analysis
has revealed that the minimum size for our proposed model is a sample of 89 firms. Because
our sample size is 120 firms, it has sufficient validity and statistical power to detect
significant effects (Cohen, 1988). Furthermore, we had less than 5% missing values per item
in the data collected, which is sufficient for partial least squares (PLS) data analysis (Hair
et al., 2017). In addition, we have checked the squaredMahalanobis distances (Byrne, 2016) for
multivariate outlier issues, which revealed no peculiarity or unusual cases in the dataset.

Finally, we conducted non-response bias tests using a t-test comparing the differences in
firm characteristics between responding and non-responding firms (Flynn et al., 2010). The
findings show no substantial statistical differences between the groups in terms of the age
(t 5 0.862, p 5 0.139) or the size of the company (t 5 0.671, p 5 0.924). Moreover, a t-test to
compare the characteristics of respondent firms with those of non-respondents was
conducted. The results indicate that non-respondents and respondents have no significant
statistical differences in terms of size (p > 0.05) or age (p > 0.05). Table 1 display the
characteristics of the sample.

3.2 Measures
In researchmodels, themeasurement constructs are conceptualised as reflective or composite
constructs (Benitez et al., 2018). In reflective constructs, the existence of one unobserved
variable and individual random error is assumed to fully explain the variance of a set of
indicators (Dijkstra and Henseler, 2015; Henseler et al., 2014). Hence, reflective constructs are
often employed in research models to measure behavioural concepts such as attitudes,
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behaviours and traits (Henseler et al., 2016). On the other hand, composite constructs consist
of more elementary components, and there are no restrictive relationships between items of
the same construct, i.e. no co-variation among a block of indicators is assumed to be explained
by a common factor (Benitez et al., 2017).

In several studies, KMP are considered reflective (e.g. Tan and Wong, 2015). However,
modelling theoretical concepts as composites or emergent variables is an evolutionary
phenomenon that has been acknowledged and employed in various disciplines inmanagement
research (Schuberth, 2021; Yu et al., 2021). In this respect, KMPs are viewed as a designed or a
“forged” concept, i.e. as a human construct rather than a naturally occurring phenomenon
(Henseler and Schuberth, 2020). Based on such premises and after consulting experts
(i.e. knowledge managers) and previous research in the KM field (i.e. Ha et al., 2021; Reich et al.,
2014), we conceptualised KMPs as a composite construct. Our conceptualisation is in line with
the definition of composites which are viewed as a mixture of ingredients (several processes in
our case) that generate a recipe (composite) (Henseler and Schuberth, 2020; Schuberth, 2021).
Moreover, we are in linewith the recommendations of Cepeda-Carrion et al. (2019) who offer tips
on the use of PLS-SEM inKM. Indeed, the authors call for “KMacademics [. . .] to be aware that
many of the measures they are using are more composites than factors” (p. 79). Regarding the
other constructs (AI, SCR and MFP), they were considered reflective in the research model.
For each item, we have used a 5-point Likert scale.

Moreover, all measures in the study were evaluated at the firm level and scales
were developed in three phases similar to Ruel et al. (2021). Phase 1 operationalizes constructs
using previous conceptualisation and cited literature. Phase 2 systematises the different sub-
constructs and items presented in previous studies, in order to identify similarities and
differences among all of them. Phase 3 evaluated the reliability and construct validity of all
multi-item scales by pre-testing the survey (O’Leary-Kelly and Vokurka, 1998). Hence, five
experts belonging to five different Italian manufacturing firms were consulted. They
reviewed the initial measurement scales, also ensuring that the questions were clear,

Count %

Sector Machinery and equipment 49 40.83%
Metal products and metallurgy 26 21.67%
Vehicles and Transport 9 7.50%
Textiles, Clothing and Leather 6 5.00%
Paper, paper products and printing 6 5.00%
Food, beverages and tobacco 5 4.17%
Petroleum, chemicals and pharmaceuticals 5 4.17%
Electronics and optical equipment 9 7.50%
Rubber and Plastics 3 2.50%
Other 2 1.67%

Turnover (MV) 0–10 21 16.54%
11–50 34 26.77%
51–100 17 13.39%
101–250 21 16.54%
251–500 14 11.02%
500þ 13 10.24%

Number of employees 0–50 22 17.32%
51–100 15 11.81%
101–250 22 17.32%
251–500 19 14.96%
501–1,000 16 12.60%
þ1,000 33 25.98%

Table 1.
Characteristics of
respondent firms
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meaningful, relevant and easy to interpret. Their feedback was used to revise the
questionnaire accordingly. Thus, some items were reformulated to be more straightforward,
some others were removed to better adapt the survey to the specificities of the Italian
manufacturing sector, and some wording was changed to reduce misinterpretations.
Appendix reports the final items used for each construct, together with the original sources.

Specifically referring to the measurement of the AI adoption construct, participants were
asked to choose the level of adoption from a list of specific AI tools derived from a review of
previous literature on AI tools already used in KM, SC and manufacturing performance
domains. In particular, the specific implementation and use of specific AI tools are used as a
proxy to survey the level of AI adoption in manufacturing firms surveyed. Investigating the
contributionmade by one specific AI tool rather than another is not the objective of this study.

3.3 Control variables
We controlled for the effects of a firm’s size and age on AI. These covariates were often
mobilised in studies on technology and digital initiatives (e.g. Syed et al., 2020; Wei et al.,
2020). Firm size is a covariate thatmay reveal how the availability of resources can influence a
firm’s adoption of digitalisation and AI initiatives (Khin and Ho, 2019). We derived a firm’s
size by computing the natural logarithm of its full-time employees. Firm age is an indicator of
the influence of a firm’s experience and knowledge on launching digitalisation and AI
projects (Zhou and Wu, 2010). In this study, we measure a firm’s age using the natural
logarithm of the total number of years the firm has been in business.

3.4 Common method bias
In survey-based studies, collecting perceptual data from a single source at a point in time
generates commonmethod bias (CMB) issues (MacKenzie and Podsakoff, 2012). To minimise
CMB effects during data collection, we have followed MacKenzie and Podsakoff (2012) and
Podsakoff et al. (2003). Thus, we gathered data from qualified respondents, used measures
from several studies, ensured the anonymity of participants, counterbalanced questions
order for predictor constructs to avoid a priming effect and item-context-induced mood state
and employed clear and simple scales for the items.

Additionally, we have undertaken statistical tests to address CMB issues. We employed
the marker variable (MV) technique based on the guidelines of R€onkk€o and Ylitalo (2011).
Consequently, we used the respondents’ experience as MV, and we conducted a regression
analysis of the research model with and without MV. The analysis reveals similar results in
terms of β value and significance, which implies that CMB issues can be deemed minimal for
this study.

Moreover, the full collinearity test was also undertaken to minimise the CMB effects,
following the procedure of Kock (2017) which consists of calculating the variance inflation
factor (VIF) value of the model’s constructs. The PLS fit analysis results indicate that all the
VIF values are below the cut-off value of 3.3 (Kock, 2017), thus confirming that CMBwas not a
major issue for this study.

3.5 Data analysis procedure
In this study, we adopt the PLS-SEM approachwhich constitutes an appropriate multivariate
pathmodelling approach used to test predictive and causal researchmodels (Hair et al., 2019).
In addition, PLS is an adequate method to use in dealing with complex models that have
composite constructs (Benitez et al., 2017, 2018, 2020; Henseler, 2021). Due to its flexibility,
PLS has been deemed appropriate for this study.

In fact, PLS-SEM analysis is based on two main stages: (1) measurement model
assessment and (2) structural model evaluation (Hair et al., 2019). Both steps were
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implemented usingAdvancedAnalysis for Composites (ADANCO) 2.0 professional software,
created by Henseler and Dijkstra (2015). This variance-based (SEM) software program can be
used to assess causal and predictive research models (Benitez et al., 2018; Henseler, 2021).

4. Results
4.1 Measurement model assessment
In the first step of the analysis, we assess the measurement model to investigate each
construct’s properties. Sincewe have a composite construct (KMPs), we adopted the approach
recommended by several scholars (Henseler, 2021; Henseler and Schuberth, 2020; Benitez
et al., 2018, 2020) which consists of undertaking a confirmatory composite analysis (CCA)
before assessing the emergent variables of the KMPs construct, i.e. the sub-constructs. For
the reflective constructs (AI, SCR andMFP), we evaluate their validity and reliability through
their items’ loadings, reliabilities and average variance extracted (AVE).

4.2 Assessment of the composite construct
We assessed the composite construct’s psychometric properties using the CCA through the
assessment of the overall fit of the model and the assessment of each emergent variable
separately (Henseler and Schuberth, 2020; Benitez et al., 2018). We employed the bootstrap-
based test for the exact overall model fit. We relied on values of the discrepancymeasures, i.e.
geodesic discrepancy (dG), standardised root mean squared residual (SRMR) and unweighted
least squares (dULS). The results obtained are adequate (SRMR score should be less than 0.08)
and below the 95% quantile of the corresponding reference distribution (Table 2).
Accordingly, the specified model which considers KMPs as composite adequately fits the
gathered data.

As a second step of the assessment, each emergent variable or sub-construct of KMPs is
considered separately. First, all the sub-constructs of KMPs were freely correlated to obtain
the latent variable scores. In the second step, the latent variable scores of the KMPs
dimensions were used as the measures of the KMPs construct. We report the results of the
analysis including the loadings, the weight estimates, the VIF scores and descriptive results
in Table 3. We tested for multicollinearity and significance level of the five KMPs sub-
construct (not reported due to space limitation) using 95% percentile confidence intervals
based on 4,999 bootstrap runs. All the correlations among the emergent variables are
adequate and none of their 95% percentile confidence intervals covered the 0 (Henseler and
Schuberth, 2020). Regarding multicollinearity, all the VIF scores are lower than 5 (Benitez
et al., 2020). Concerning the loadings and the weights of emergent indicators, we followed the
guidelines of Benitez et al. (2018) who recommend retaining indicators regardless of the
significance of their weight provided that their loading is significant. The findings show only
one indicator having a weight that was not significant (KA4) but all the loadings of the
emergent variables (KMPs sub-constructs) were significant at the 0.001 level. Combined
together, the results of the assessment reveal no empirical evidence against the specified
model and suggest adequate properties for KMPs as a composite construct (Benitez et al.,
2018; Henseler and Schuberth, 2020; Henseler, 2021).

Model fit (saturated model)
Discrepancy Value HI95

SRMR 0.0547 0.0571
dULS 3.8126 4.1542
dG 1.6118 2.5636

Table 2.
The confirmatory

composite analysis
of model fit
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4.3 Reliability and validity of reflective constructs
For the reflective constructs, we assessed the reliability of their items using factor loadings,
whichmust be above 0.71 (Hair et al., 2017). The itemswith low factor loadings were dropped,
and the remainder of the indicators displayed adequate and significant loadings (Table 4).

Construct Sub construct Mean SD VIF Weight Loading

KMPs (composite,
Mode B)

Knowledge acquisition
(emergent)
KA1 3.3417 1.1412 2.5087 0.219*** 0.591***
KA2 2.9000 1.1030 1.9162 0.120*** 0.497***
KA3 3.6333 1.1147 2.8316 0.288*** 0.791***
KA4 4.0250 0.8347 1.4462 0.074 0.248***
KA5 3.1417 1.2588 2.2374 0.187*** 0.644***
KA6 2.9250 1.2513 3.0452 0.208*** 0.716***
KA7 2.7500 1.3917 2.2762 0.216*** 0.716***
KA8 3.4667 1.0446 2.0576 0.225*** 0.625***
Knowledge creation and
generation (emergent)
KCG1 3.8500 1.0179 3.1556 0.230*** 0.815***
KCG2 3.5500 1.1215 3.7605 0.207*** 0.765***
KCG3 3.7000 0.9839 4.4088 0.252*** 0.853***
KCG4 3.5667 1.0349 3.2007 0.217*** 0.804***
KCG5 3.4000 1.0721 2.5374 0.163*** 0.676***
KCG6 3.3083 1.1580 2.8333 0.230*** 0.677***
Knowledge use and application
(emergent)
KUA1 3.3667 0.9252 2.5569 0.312*** 0.830***
KUA2 3.9917 0.8934 2.4571 0.227*** 0.713***
KUA3 3.9500 0.8386 2.8991 0.282*** 0.801***
KUA4 3.5167 1.1300 3.6782 0.426*** 0.829***
Knowledge archiving and
updating (emergent)
KAU1 3.2333 1.0349 4.6908 0.180*** 0.860***
KAU2 3.2417 1.1000 4.7234 0.163*** 0.822***
KAU3 3.2917 1.0322 3.4558 0.155*** 0.759***
KAU4 3.4250 1.1050 3.1487 0.162*** 0.750***
KAU5 3.4000 1.2394 3.0106 0.149*** 0.751***
KAU6 2.9500 1.2424 3.3338 0.160*** 0.778***
KAU7 3.3500 1.2745 3.2915 0.164*** 0.801***
KAU8 3.1083 1.3271 2.9946 0.145*** 0.724***
Knowledge sharing and transfer
(emergent)
KST1 3.5083 0.9701 2.2074 0.138*** 0.683***
KST2 3.6250 0.9878 4.3863 0.116*** 0.657***
KST3 3.6750 1.1313 3.9693 0.166*** 0.776***
KST4 3.7750 0.9117 2.7645 0.158*** 0.807***
KST5 3.3500 1.2067 2.6291 0.150*** 0.678***
KST6 2.2583 1.0807 1.5614 0.147*** 0.706***
KST7 2.9333 1.1356 3.1634 0.080*** 0.473***
KST8 3.3917 1.2387 2.9949 0.158*** 0.738***
KST9 3.1500 1.1049 4.1526 0.118*** 0.744***
KST10 2.5833 0.9701 2.6009 0.156*** 0.813***

Note(s): *p < 0.1 **p < 0.01 ***p < 0.001
Based on n 5 4.999 bootstrapping

Table 3.
Measurement model
evaluation of the
composite construct
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Next, we assess the reliability of the reflective constructs through Dijkstra-Henseler’s
reliability, J€oreskog’s composite reliability and Cronbach’s alpha, which measure the internal
consistency of constructs (Hair et al., 2019). With all the reliability scores exceeding 0.7, the
reliability of the constructs is corroborated (Table 5). In addition, we use the AVE values to
evaluate the convergent validity of the constructs. Because all AVE scores are above 0.5, the
convergent validity of all the constructs is confirmed (Ghasemy et al., 2021).

Finally, we evaluated the discriminant validity of the constructs using the criterion
approach of Fornell and Larcker (1981). Accordingly, we compared the square roots of the
AVE of each construct with the correlations between other constructs. As displayed in
Table 6, the square roots of the AVEs for all constructs were greater than the correlations
between constructs. Furthermore, the heterotrait-monotrait ratio (HTMT) criterion was also
employed to assess discriminant validity. With all the HTMT scores below the limit (<0.9),
the findings show adequate discriminant validity (Henseler et al., 2016).

4.4 Structural model assessment
The next step in the PLS analysis involves evaluating the quality of the structural model.
Several indicators are employed to assess the model’s fit based on the coefficient of

Construct Items Mean SD Loading

Artificial intelligence (AI) adoption AI1 0.8750 1.4234 0.7734***
AI2 0.3000 0.9402 0.6805 Ψ

AI3 0.9750 1.6975 0.7500***
AI4 0.7000 1.3385 0.7494***
AI5 0.9000 1.5792 0.6635 Ψ

AI6 0.3110 1.5792 0.6807 Ψ

AI7 0.2200 1.7561 0.8085***
AI8 0.3481 0.8990 0.5640 Ψ

AI9 0.4222 1.3720 0.6120 Ψ

Supply chain resilience (SCR) SCR1 3.2667 1.0430 0.7279***
SCR2 3.3667 0.9520 0.7800***
SCR3 3.5917 0.9915 0.7841***
SCR4 3.8000 0.9666 0.8372***
SCR5 3.4167 0.9751 0.7639***

Manufacturing firm performance (MFP) MFP1 3.5750 0.1185 0.5321 Ψ

MFP2 3.4750 0.2074 0.7055***
MFP3 3.5000 0.1831 0.5413 Ψ

MFP4 3.9916 0.3055 0.6856Ψ

MFP5 3.5750 0.3139 0.8536***
MFP6 3.9166 0.3256 0.7884***

Note(s): **p < 0.01 ***p < 0.001
ΨItems deleted due to insufficient loading < 0.7
Based on n 5 4.999 bootstrapping

Constructs rho (ρA) rho (ρc) Alpha(α) AVE

Artificial intelligence (AI) 0.7767 0.8539 0.7732 0.5940
Supply chain resilience (SCR) 0.8432 0.8854 0.8384 0.6075
Manufacturing firm performance (MFP) 0.7139 0.8271 0.7100 0.6160

Note(s): Rho (ρA): Dijkstra-Henseler’s reliability; rho (ρc): J€oreskog’s composite reliability; Alpha: Cronbach’s
reliability, AVE 5 average variance extracted

Table 4.
Indicators’ reliability

of the reflective
constructs

Table 5.
Reliability and

convergent validity
assessment of

reflective constructs
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determination, effect size and the SRMR value (Benitez et al., 2018, 2020; Henseler, 2021). The
score of SRMR has been previously deemed adequate (Table 2). Concerning the coefficient of
determination (R2 or adjusted R2), several scholars consider a value above 0.20 sufficient to
explain the relationships between predictor and predicted variables (Wooldridge, 2020). In
Table 7, theR2 and adjustedR2 coefficients are above 0.2 and suggest a sufficient explanatory
power for research models assessed in PLS (Ghasemy et al., 2021; Hair et al., 2019).

Next, the effect size f 2 is often used as a substantial measure of predictor variables’ ability
to explain the endogenous variables (Hair et al., 2019). According to Cohen (1988), there are
three levels of effect sizes: small effects (f 2 5 0.02), medium effects (f 2 5 0.15) and large
effects (f 25 0.35). The results in Table 7 display large effect sizes, thus indicating a sufficient
explanatory power on the part of the structural model.

4.5 Hypothesis testing
We used bootstrap resampling to test the hypotheses. The bootstrapping procedure is
performed by having a large number of subsamples taken from the original sample and
replacing it to produce a standard bootstrap error and to generate the β coefficient estimates
(Wong, 2013). This standard error would produce a significance test for both the inner and
outer model (T-values) by approximating the data normality (Kock, 2018). Bootstrapping
method has been criticised for inherent instability; therefore, we followed the
recommendations of Sarstedt et al. (2022) to perform a high number of bootstrapping
iterations to obtain better approximation of the standard error and increase the significance
of the t statistics. Consequently, we performed 10,000 resampling to enhance the results of
hypotheses testing’s stability. Following Aguierre-Urreta and R€onkk€o’s (2018)
recommendations, we relied on percentile confidence intervals provided by ADANCO
software in order to test the hypotheses of our model. The results are displayed in Table 8.

The results reveal positive and significant relationships between AI and KMPs, thus
supporting H1. However, there was no significant impact on the part of AI on SCR and MFP;
therefore, H2 and H3 were rejected.

The influence of KMPs onMFP and SCRwas found to be significant and positive; thus, H4
and H5 were supported. Conversely, there was no significant impact on the part of SCR on
MFP. Therefore, H6 was rejected.

In addition, the results indicate a difference regarding the maturity of AI adoption based
on firm size (β 5 0.26, p < 0.01), implying that, the larger a firm is, the more advanced its AI

Constructs AI SCR MFP

AI 0.7707 0.3878 0.3993
SCR 0.1051 0.7794 0.6265
MFP 0.0898 0.2260 0.7848

Note(s):Diagonal elements represent the square root of AVE (average variance extracted) for each construct.
Above the diagonal elements are the HTMT values

Constructs R2 Adj. R2 f 2

AI - - -
KMPs 0.2315 0.2250 0.3013
SCR 0.4080 0.3979 0.0006–0.5116
MFP 0.3822 0.3662 0.0208–0.2144

Table 6.
Correlations and
discriminant validity
of constructs

Table 7.
Structural model
evaluation
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adoption becomes. In contrast, firm age does not influence the maturity of AI initiatives.
We also tested whether the indirect effects of the hypothesised relationships are significant
and we obtained a beta coefficient equal to 0.29 (p < 0.01) for the relationship AI- KMPs-MFP
and a beta coefficient equal to 0.30 (p < 0.01) for the relationship AI- KMPs-SCR. Thus,
although the impact of AI on MFP and SCR is not significant, the results show a significant
effect stemming from the mediation of KMPs. Therefore, with the mobilisation of KMPs, AI
adoption can have a positive and significant impact on both MFP and SCR.

4.6 Robustness check
To assess the analysis’s robustness, we have adopted the approach of several scholars
(Ghasemy et al., 2021; Hair et al., 2019; Sarstedt et al., 2020) to PLS robustness check.
Consequently, we have undertaken the non-linear effects test to determine whether the
relationships between the constructs are linear. Such a test examines the quadratic effects
between the variables of the hypothesised model using a two-stage approach based on a
bootstrapping analysis with 9,999 subsamples at a 5% significance level (Ghasemy et al.,
2021). The results reveal that all the quadratic effects were not significant, thus ensuring the
linearity of the relationships between the model’s constructs. Therefore, the robustness of the
hypothesised model is deemed adequate.

5. Discussion
This paper aims to provide and test a conceptual model in which AI, KMPs and SCR are
simultaneously considered in terms of their reciprocal relationships and impact on MFP. The
results of the investigation support three out of six hypotheses of the initially proposed
conceptual model and reveal amediating effect on the part of KMPs in the relationship between
AI and MFP and the relationship between AI and SCR. Figure 2 shows the emergent model.

5.1 Theoretical implications
The insights of this study are partially aligned with previous findings proving that AI
adoption positively affects KMPs within firms (e.g. Al Mansoori et al., 2021; Liebowitz, 2001;
Mittal and Kumar, 2019) and KMPs have a positive impact on both SCR (e.g. Kumar and
Anbanandam, 2019; Umar et al., 2021) andMFP (e.g. Knight andHowes, 2012; Paniccia, 2018).

At the same time, the obtained results stand partially in contrast with the previous
findings. In fact, even though the adoption of AI may enable real-time information sharing
in the SC, fostering its resilience, the decision-making process should also be supported by
structured KMPs (Buyukozkan and Gocer, 2018). In other words, the mere adoption of AI

Hypothesis test Coeff (β) Std. Deviation T Statistics 95% percentile CI Conclusion

AI→KMPs (H1) 0.4812 0.0736 6.0618*** [0.300; 0.683] H1 Supported
AI→MF (H2) 0.0063 0.0792 0.0787 n.s [�0.2509; 0.061] H2 Rejected
AI→SCR (H3) 0.0222 0.0798 0.2912 n.s [�0.243; 0.053] H3 Rejected
KMPs→MFP (H4) 0.5105 0.1217 3.6411*** [0.461; 0.930] H4 Supported
KMPs→SCR (H5) 0.6278 0.0817 8.1041*** [0.598; 0.9016] H5 Supported
SCR→MFP (H6) 0.1343 0.1271 1.0566 n.s [�0.268; 0.238] H6 Rejected
Size→AI 0.2625 0.0987 2.6334** [0.058; 0.455] Significant effect
Age→AI �0.0404 0.0460 �0.8857 n.s [�0.147; 0.029] Non-significant effect

Note(s): ***p < 0.01 **p < 0.05* p < 0.1 n.s: not significant
Based on n 5 9.999 bootstrapping

Table 8.
Hypothesis test
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tools without appropriate KMPs is not effective (Zheng et al., 2021). The use of IoT sensors,
for example, enables the collection of data from the external context in a rawmode, without
providing any specific interpretation. Big data analytics are able to highlight particular
patterns and trends within this raw data. In this way, it is possible to transform the data
into useful information. Accordingly, using AI, which is intended to simulate the
behaviour of human reasoning, allows for transforming data and information into useful
knowledge (Ardolino et al., 2018). However, only effective KMPs can turn knowledge into
appropriate decisions (Palaniswami and Jenicke, 1992; Sardar, 2020), with positive effects
in terms of both SCR and MFP. Therefore, KMPs amplify the potential of AI, providing
firms with the opportunity to have a competitive advantage that translates into both better
performances as compared to competitors and greater resilience in dealing with turbulent
situations. In fact, one of the hypotheses of the article aims to test whether the adoption of
AI in manufacturing companies contributes positively to improving the effectiveness of
KMPs. This hypothesis is accepted. Further originality of our study concerns the fact that
the adoption of KMPs acts as a mediator through which AI affects SCR and MFP. To the
best of our knowledge, this topic has not been sufficiently investigated in the previous
literature.

Figure 2.
Emergent model
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5.2 Practical implications
From a practical point of view, the existence of a mediator reveals something about the
process throughwhich one construct (AI in our case) influences another (MFP and SCR in this
case) (Renard, 2019), resulting in important practical implications for manufacturing firms. In
fact, the emergent model (Figure 2) indicates that AI promotes KMPs (i.e. knowledge
acquisition, creation and generation, use and application, archiving and updating, and
sharing and transfer) but does not pave the way for MFP enhancement or SCR development.
AI has positive effects on MFP and SCR only when KMPs intervene in these relationships.
These findings highlight the critical role of KMPs in the manufacturing industry. This means
that, to enhance the AI-MFP and AI-SCR links, managers must devote appropriate measures
to develop effective KMPs within the firm, encouraging employees to commit to acquiring,
sharing, applying and using knowledge. In other words, manufacturing firms can use AI
tools to cultivate their level of capacity in KMPs (knowledge acquisition, sharing and
application), which will, in turn, lead to better MFP and SCR enhancement.

Practically speaking, a manufacturing firm that has AI tools at its disposal will be able to
manage and transform the various and numerous data that it acquires from the inside and
also – and above all – from the outside into useful knowledge for the firm itself. This improved
knowledge that will circulate within the firm will allow it, on the one hand, to improve its
performance and, on the other hand, to increase the resilience of its SC.

6. Conclusions
The findings of this study contribute to the theoretical development of a conceptual model
explaining the relationships between AI, KMPs and SCR, as well as their impact on MFP.
Moreover, this study contributes to the literature by empirically examining the relationships
betweenAI, KMPs and SCR in terms of their impacts onMFP. By doing so, we answer the call of
practitioners (e.g.WorldManufacturingFoundations, 2021) to jointly considerAI,KMPsandSCR
in terms of their reciprocal effects on MFP. In particular, we demonstrate that KMPs act as a
mediator throughwhichAIbenefits SCRandMFP; thus, theyplaya crucial role inmanufacturing
firms interested in properly applying AI tools to ameliorate their performance and resilience.

However, the findings of this study should be interpreted with caution in light of several
limitations, which also represent interesting future research avenues. First of all, this paper
investigates manufacturing firms located exclusively in Italy. Thus, even though it may be
reasonable to believe that these firms can be considered a representative sample of – at least –
European manufacturing firms, the enrichment of the starting sample could provide useful
further insights. Moreover, the response rate could be increased, for example, through an
extension of the time period devoted to the data collection. Moreover, although the Italian
manufacturing context is characterised by a high proportion of SMEs (OECD, 2021), our
investigation has not been conducted on this specific group. In fact, the average size of
companies in our sample of respondents is larger than the national average; therefore, the
results reported in this paper potentially tend to bemore positive than the actual situation and
further research may apply the same investigation exclusively to SMEs to specifically
understand their reality. Furthermore, although questionnaires may be used as the only data
collection method, future research may link this method with other methods (i.e. a mixed- or
multiple-method research design), such as ad hoc interviews, in order to collect more detailed
data. Lastly, we proposed a linear model; however, future studies could explore the existence
of a circular relationship between the investigated constructs. For example, we stipulate that
AI positively affects KMPs, but it would be interesting to consider the possibility that KMPs
may also have a positive effect on AI.

To conclude, our study highlights the crucial importance of themediating role of KMPswhen
examining the relationships between AI and MFP and between AI and SCR. The viewpoints
proposed in this study have important implications for future research and manufacturers.
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Notes

1. See: https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/
how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-
forever (Accessed 11 July 2022)
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