Privacy engineering for learning analytics in a global market

Tore Hoel (Oslo Metropolitan University, Oslo, Norway)
Weiqin Chen (Oslo Metropolitan University, Oslo, Norway) (SLATE, University of Bergen, Bergen, Norway)

International Journal of Information and Learning Technology

ISSN: 2056-4880

Publication date: 5 August 2019



Privacy is a culturally universal process; however, in the era of Big Data privacy is handled very differently in different parts of the world. This is a challenge when designing tools and approaches for the use of Educational Big Data (EBD) and learning analytics (LA) in a global market. The purpose of this paper is to explore the concept of information privacy in a cross-cultural setting to define a common point of reference for privacy engineering.


The paper follows a conceptual exploration approach. Conceptual work on privacy in EBD and LA in China and the west is contrasted with the general discussion of privacy in a large corpus of literature and recent research. As much of the discourse on privacy has an American or European bias, intimate knowledge of Chinese education is used to test the concept of privacy and to drive the exploration of how information privacy is perceived in different cultural and educational settings.


The findings indicate that there are problems using privacy concepts found in European and North-American theories to inform privacy engineering for a cross-cultural market in the era of Big Data. Theories based on individualism and ideas of control of private information do not capture current global digital practice. The paper discusses how a contextual and culture-aware understanding of privacy could be developed to inform privacy engineering without letting go of universally shared values. The paper concludes with questions that need further research to fully understand information privacy in education.


As far as the authors know, this paper is the first attempt to discuss – from a comparative and cross-cultural perspective – information privacy in an educational context in the era of Big Data. The paper presents initial explorations of a problem that needs urgent attention if good intentions of privacy supportive educational technologies are to be turned into more than political slogans.



Hoel, T. and Chen, W. (2019), "Privacy engineering for learning analytics in a global market", International Journal of Information and Learning Technology, Vol. 36 No. 4, pp. 288-298.

Download as .RIS



Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.