The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/2690-6090.htm

JPOM A hybrid machine learning
approach for analysis
of stegomalware

104 Prudence Kadebu
Department of Information Systems, Women’s University in Africa,
Received 12 October 2021 y
Rovoes 5 Ocgper Harare, Zmbabwe
30 January 2023 Robert T.R. Shoniwa

Accepted 15 February 2023
Zimbabwe Information and Communication Technology, Harare, Zimbabwe

Kudakwashe Zvarevashe
Victoria Institute of Technology, Adelaide, Australia

Addlight Mukwazvure

Department of Computer Engineering, University of Zimbabwe, Harare, Zimbabwe

Innocent Mapanga
A Duvision of Zimbabwe Institution of Engineers,
Zimbabwe Information and Communication Technology, Harare, Zimbabwe

Nyasha Fadzai Thusabantu
A Division of Zimbabwe Institution of Engineers,
Zimbabwe Information and Communication Technology, Harare, Zimbabwe and
Department of Academics, Harare Institute of Technology, Belvedere, Zimbabwe, and

Tatenda Trust Gotora
A Division of Zimbabwe Institution of Engineers,
Zimbabwe Information and Communication Technology, Harare, Zimbabwe and
Department of Computer Science, Midlands State University, Gweru, Zimbabwe

Abstract

Purpose — Given how smart today’s malware authors have become through employing highly sophisticated
techniques, it is only logical that methods be developed to combat the most potent threats, particularly where
the malware is stealthy and makes indicators of compromise (IOC) difficult to detect. After the analysis is
completed, the output can be employed to detect and then counteract the attack. The goal of this work is to
propose a machine learning approach to improve malware detection by combining the strengths of both
supervised and unsupervised machine learning techniques. This study is essential as malware has certainly
become ubiquitous as cyber-criminals use it to attack systems in cyberspace. Malware analysis is required to
reveal hidden IOC, to comprehend the attacker’s goal and the severity of the damage and to find vulnerabilities
within the system.

Design/methodology/approach — This research proposes a hybrid approach for dynamic and static
malware analysis that combines unsupervised and supervised machine learning algorithms and goes on to

I‘ show how Malware exploiting steganography can be exposed.

© Prudence Kadebu, Robert T.R. Shoniwa, Kudakwashe Zvarevashe, Addlight Mukwazvure, Innocent
International Journal of Industrial - Vlapanga, Nyasha Fadzai Thusabantu and Tatenda Trust Gotora. Published in International Journal of
Engineering and Operations Industrial Engineering and Operations Management. Published by Emerald Publishing Limited. This

Management % 3 , A . A -

Vol-gfﬁzv 2023 article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may
o erald p:lbnshing Limited reproduce, distribute, translate and create derivative works of this article (for both commercial and no
el35N: 2690.6104 commercial purposes), subject to full attribution to the original publication and authors. The full terms of

pISSN: 2690-6090 I X :
Dol 101108/MIEOM 0120230011 this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/IJIEOM-01-2023-0011

Findings — The tactics used by malware developers to circumvent detection are becoming more advanced
with steganography becoming a popular technique applied in obfuscation to evade mechanisms for detection.
Malware analysis continues to call for continuous improvement of existing techniques. State-of-the-art
approaches applying machine learning have become increasingly popular with highly promising results.
Originality/value — Cyber security researchers globally are grappling with devising innovative strategies to
identify and defend against the threat of extremely sophisticated malware attacks on key infrastructure
containing sensitive data. The process of detecting the presence of malware requires expertise in malware
analysis. Applying intelligent methods to this process can aid practitioners in identifying malware’s behaviour
and features. This is especially expedient where the malware is stealthy, hiding I0C.

Keywords Malware analysis, Steganography, Stegomalware, Malware detection, Machine learning

Paper type Research paper

1. Introduction

Cyber attackers are constantly conceiving new sophisticated ways to perpetrate breaches on
systems while making their exploits difficult to detect. Injection of malicious software is one
typical method commonly used in these attacks. Malicious software, also known as malware,
refers to any type of software such as viruses, trojans, rootkits, trapdoors, adware and
ransomware (Distler, 2007). It has become one of the many threats wreaking havoc across the
Internet, threatening individuals and businesses around the world. These have a negative impact
both on business operations and service delivery as well as the privacy of personal information of
individuals. Moreover, significant financial losses as a result of malware are constantly reported.
Those who use the Microsoft Windows operating system have been particularly vulnerable. In
the past, ransomware cyberattacks were commonly observed in major corporations, but
nowadays, even individuals have suffered security breaches. Various kinds of point-of-sale (POS)
malware have infected merchants’ POS systems, with the goal of harvesting the credit card
details of customers utilizing remote access tools and credential dumpers to gain access to the
system and inject malware (Rautmare, 2020). Malware can be introduced into the system via
phishing attempts, in which an insider opens a link sent to their email that contains malware. This
is a typical method for threat actors to obtain remote access to systems.

Of late, a type of malware has emerged applying methods for steganography, which is a
technique for covering data so that it cannot be easily identifiable. This has become popular as
malware is embedded into images through subtle alterations of pixels, especially in colour
images with many thousands of pixels. This is also possible in smartphone App assets like
databases, documents and multimedia content (Suarez-Tangil ef al., 2014). This type of malware
using steganography is very stealthy and difficult to detect by conventional methods. Ucci et al.
(2019) states that as security technology evolves, evasion occurs very instantly, demonstrating
that attackers are constantly devising ways to circumvent security mechanisms designed to
safeguard systems against breaches. Malware analysis involving the detection, analysis and
investigation of malware in a system is the way cyber security practitioners gain traction ahead
of threat actors while taking into cognisance the fact that these criminals are also doing the
same, hence the need for continuous improvement of methods for dealing with malware. There
are two main types of malware analysis: dynamic analysis and static analysis (Oktavianto and
Muhardianto, 2013). The former refers to methods aimed at profiling actions of the malware
binary at runtime, and the latter is aimed at decompiling and analysing the internal structure of
the binary itself (Sharif et al,, 2008). In static analysis, the malware programme code is inspected
to identify hidden patterns and all behavioural scenarios of the malware there without
execution of the programme code (Chumachenko, 2017). Techniques such as file fingerprinting
are used with static analysis to ensure that the file does not change during the analysis.
MD5sums and MDb5deep are some examples used for this purpose (Kendall and Mcmillan,
2007). The source code may not be available for static analysis, and thus the analysis has to
start with some reverse engineering tasks of disassembling and decompiling for static analysis

Analysis of
stegomalware

105

IEOM
52

106

to be conducted (Oktavianto and Muhardianto, 2013). Dynamic analysis entails that the
behaviour of the malware is monitored during execution of the file. Malware authors make
use of techniques such as obfuscation (Bhojani, 2014), viral polymorphism (Bashari Rad
et al., 2012) packers, anti-debugging, anti-disassembling, sandbox evasion and antivirus
evasion. These mask the traces of their presence and behaviour patterns, allowing them to
dodge detection and impede mechanisms put in place. Static analysis, which would
ordinarily aid in the reverse engineering of malware code, is hampered by them. As a result,
dynamic analysis outclasses static analysis. Sandboxing is a technique for dynamic
analysis that involves running files in a virtual environment for a more detailed analysis
(Sethi et al., 2017). Isolating suspicious files ensures analysis is done without the risk of the
malware affecting the system during execution. Cuckoo sandbox is one such type
(Oktavianto and Muhardianto, 2013). If a system is compromised, the first action in incident
response is to isolate the affected system. If it is a server, it should be disconnected from the
network to prevent the damage from spreading to other areas of the system and
subsequently followed by either static or dynamic analysis.

Because most tools and approaches, such as antivirus software, rely on malware
signatures, any techniques that cannot detect stealth attacks are useless in mitigating them.
Thanks to advances in the field of machine learning, there has been an uptick in strategies
that are more effective in dealing with malware and can defend against the threats posed by
malware exploits. To that end, the goal of this work is to propose a machine learning
approach to improve malware detection by combining the strengths of both supervised and
unsupervised machine learning techniques. This study is crucial as malware has certainly
become ubiquitous in its use by criminals to attack systems on the cyberspace (Lengyel et al.,
2014). Malware analysis is required to reveal hidden indicators of compromise (I0C), as well
as to comprehend the attacker’s goal, the severity of the damage and to find vulnerabilities
within the system (Kendall and Mcmillan, 2007).

Given how smart today’s malware authors have become, employing highly sophisticated
techniques, it is only logical that methods be developed to combat the most potent threats,
particularly where the malware is stealth, making IOC difficult to discover. After the analysis
is completed, the output can be employed to detect and then neutralize the attack (Baker,
2020). The research paper is organized as follows: Section 2 focuses on the review of literature
on malware analysis with more focus on malware detection. The methodology will come in
Section 3 to describe the proposed work. Section 4 looks at the methods for malware analysis,
followed in Section 4 by a proposed framework for hybrid malware analysis using supervised
and unsupervised machine learning, then in Section 5 by results and discussion. Finally, in
Section 6, we conclude the work.

1.1 Objectives

The objective of the research is to uncover the methods used in malware analysis by
surveying related literature. The research also aims to expose the various means by which the
malware authors try to ensure the malware remains undetected. The authors also aim to
assess the extent to which machine learning techniques are being applied in malware analysis
and propose a hybrid framework for unsupervised and supervised machine learning for
malware analysis.

2. Literature review

The increase in connected devices and access to resources deployed online has led to the
widening of the attack surface of most systems. The Internet is a jungle awash with malware
of all types deployed in diverse ways. However, the task of detecting and identifying the

malware is a daunting one due to obfuscation which is applied by cyber attackers to mask its
presence (Komatwar and Kokare, 2021; Okane et al.,, 2011). Steganography and obfuscation is
one way malware gets deployed onto a victim’s system through embedding it within an
image to produce a type of malware known as stegomalware. This leverages the prevalence
of free image hosting services on the Internet and the absence of techniques that can
efficiently detect malware within images. Scanning every image for malware also comes with
high overheads which may slow down the system. Suarez-Tangil et al. (2014). present a
method supported by a tool for identifying stegomalware in smartphones. Their method
focuses on identifying the location and components to be extracted in malware detection.
They used the tool to analyse 55,000 apps, and their findings show the presence of
stegomalware in many apps.

Early discovery of stegomalware includes ZeusVM banking Trojan which was discovered
at Trend Micro embedded in JPEG images meant to launch a man-in-the-browser (MITB)
attack in 2014. ZeusVM, using steganography from seemingly harmless images, retrieved
configuration information (O’Meara et al, 2016). This was used to intercept banking
transactions, allowing the attackers to transfer money from the victim’s bank account.
Steganography permits the malware to evade intrusion detection systems and antivirus
software.

Sharif et al. (2008) propose Eureka, a framework for analyzing static Internet malware
binaries using a de-obfuscation technique. In a Eureka-managed VM environment, Eureka
examines the subject-packed malware binary for evidence of tracing or debugging. After
that, the malware is unpacked. Eureka uses a coarse-grained execution tracker that employs a
heuristic-based as well as a binary n-gram statistical trigger to determine whether the
unpacked process picture has reached a stable state. The IDA-Pro disassembler disassembles
the reconstructed process image and performs API resolution, which is a procedure that uses
automated de-obfuscation to recover concealed API invocations enabling static analysis to
proceed. The image of the code is then sent to the analysability metrics module, which
evaluates the static analysis results. Finally, Eureka uses the code graph and ontology
creation module to generate the call graph and ontology labels, as well as extracting,
annotating and simplifying the structure. This effort is critical in addressing the issue of
obfuscation, which would ordinarily obstruct static analysis. It will not, however, be able to
assist in the classification of the malware that has been found.

A dynamic malware analysis system they termed DRAKVUF is designed to improve
stealth by executing malware samples while leaving no trace in the analysis VMs is presented
in (Lengyel et al.,, 2014). We also present novel techniques to eliminate blind-spots created by
kernel-mode rootkits by extending the scope of monitoring to include kernel internal
functions, and to monitor file-system accesses through the kernel’s heap allocations. With
extensive tests performed on recent malware samples, we show that DRAKVUF achieves
significant improvements in conserving hardware resources while providing a stealthy,
in-depth view into the behaviour of modern malware. DRAKVUF is implemented based upon
four requirements of scalability, which allows for reduction in performance overhead in
sample analysis while improving on the capacity to analyse large samples concurrently. The
second requirement, fidelity, ensures that enough data are collected at runtime while also
allowing for resistance to against tampering for accurately analysis. The third requirement,
stealth, ensures that DRAKVUEF remains undetectable even within a monitored environment.
Lastly, isolation means DRAKVUF should be protected against tampering by isolating it
from the analysis VMs. The advantage of this malware analysis system is its ability to
execute stealthily, thus making it easy to detect malware without the intruder being aware.
However, like in the study by Lengyel ef al. (2014), it cannot assist in classification of malware.

Min and Varadharajan (2014) proposed a technique of “feature-distributed malware”
which applies a method for bypassing security defence mechanisms such as application

Analysis of
stegomalware

107

IEOM
52

108

whitelisting, and also evades behavioural detection by antivirus’ software. The malware is
sophisticated in the way it distributes its features to several software components
dynamically, thus making its detection very difficult. The paper exposes the risks associated
with such advanced malware and also suggests ways to circumvent them. The defence
utilizes digital certificates of software components to thwart any attempts to load malicious
components.

A survey of malware analysis using machine learning is presented in the study by Ucci
et al. (2019) where they expose the need to make trade-offs between maintaining high
accuracy and performance of malware analysis and supplying the required equipment, a
study termed malware analysis economics. They also make a connection between feature
extraction and execution time, and the work goes on to assess whether desired features come
from static or dynamic analysis, which has a bearing on execution time since, unlike dynamic
analysis, static analysis does not require running the samples. Although the research gives a
survey of techniques, it also provides a qualitative and simplified illustration of analysis
leveraging on the introduced trade-off.

A two-level framework for detecting (macro) and classifying (micro) malware is proposed
in (Sethi et al., 2017). The Cuckoo sandbox is used in the work to generate reports for static
and dynamic analysis from executing sample files in a virtual environment. Their framework
includes a novel feature extraction module. Weka framework is used to build and test
different machine learning models on a data set of 220 samples of both malicious and benign
files. J48, SMO and random forest yielded 100%, 99% and 97% detection rate, respectively,
and 100%, 91% and 66.67%, respectively, for classification. The data set used in the
experiments is too sparse which may create bias.

A data mining framework that uses automatically discovered patterns from data to detect
new malicious binaries is proposed in (Schultz et al., 2001). They try to solve the problem of
hand-generated heuristics used by antivirus software which are usually costly and
ineffective as virus signatures evolve. In contrast to the normal virus scanner technologies
that have a virus signature detector and a classifier to detect new viruses based upon the
detected signatures, the proposed framework trained data mining algorithms which improve
on the reduction in false positive rates. Most of the literature reviewed focused on dynamic
malware analysis which involves execution of the malicious code to understand the malware.
Tables 1 and 2 give an overview of malware analysis and a brief summary of some of the
researches, respectively. The success of malware analysis techniques depends upon how fast
the malware can be detected. Machine learning techniques have been popularly applied to
detect malware with very high performance.

In contrast to the normal virus scanner technologies that have a virus signature detector
and a classifier to detect new viruses based upon the detected signatures, the proposed
framework trained data mining algorithms which improve on the reduction in false positive
rates. Most of the literature reviewed focused on dynamic malware analysis which involves
execution of the malicious code to understand the malware. Tables 1 and 2 give an overview
of malware analysis and a brief summary of some of the researches, respectively. The success
of malware analysis techniques depends upon how fast the malware can be detected. Machine
learning techniques have been popularly applied to detect malware with very high
performance.

3. Methods

This section discusses the most common techniques for malware analysis that is sandboxing
and also machine learning. The Cuckoo sandbox as a case study will be explored to
understand what information can be realized regarding the malware behaviour and
attributes.

Types of Malware Types of Malware Analysis
Virus Static Analysis
Worm Dynamic Analysis

Trojan Horse Hybrid
Backdoor
Spyware
Adware
Rootkits

Stegomalware

Tools for Analysis Malware Defense
Sandboxes Firewall
Sniffers Antivirus Software
Reverse code Engineers Secure Web Gateways
Disassemblers Sandboxing
Debuggers
Decompilers

Network analyzers

Malware Incident Response
Attacks/Acquisition Isolation of compromised unit
Phishing emails Preparation, Identification,
Social Engineering Containment, Eradication

Infected attachments
Infected websites
malicious browser plugin
USB infection

Recovery, Lessons learned.

Analysis of
stegomalware

109

Table 1.
Malware analysis
in brief

3.1 Cuckoo sandbox

The Cuckoo sandbox, developed by Claudio “nex” Guarnieri, is an open source sandboxing
tool that is used for dynamic malware analysis (Oktavianto and Muhardianto, 2013).
It implements a virtual malware analysis lab which offers a platform to isolate and analyse
suspicious files without risking having malware replicating and affecting other parts of the
system. Cuckoo automatically executes files, analyses them and collects comprehensive
results about the behaviour of the malware as it runs in an isolated virtual environment. A file
with malware can be submitted into the Cuckoo virtual environment for analysis. After
submission, Cuckoo creates several subfolders for the analysis including memory.dmp, file
containing the full memory of the analysis machine, and is useful in memory forensic
analysis. In the subfolder, there is also the dump.pcap, which is the network dump file that can
be further analysed with a network packet tracer like Wireshark in the case of Cuckoo.
Additional tools come in handy for various processes, and these may also be combined. For
instance, an advanced persistent attack (APT) is analysed using Cuckoo sandbox, volatility
and another tool YARA for a more enhanced analysis.

Cuckoo sandbox was used to analyse an infected executable file. In Table 3, the executable
file was identified to have a virus known as Sality. Static analysis performed using Cuckoo
shows that some libraries are imported form KERNEL32.DLL, which can then add an entry to
the registry for instance:

HKEY_LOCAL_MACHINE\Software\ Microsoft\Windows\CurrentVersion\Run

This defines programmes that can run at start-up; thus, the virus will use this to try and
maintain access to the victim’s machine this way. The malware can imitate legitimate
software. Its activities are shown in the processes section. Malware executable files can be
viewed by means of a disassembler application such as Radare, a reverse engineering tool.

ApAnpoadsax
‘UORIISSEID 9, /999

SISATRUR SIeM[BW

Ayrequars uo paseq sopdwes

papuedxa PUB 9%7T6 ‘%001 SO[j IO} XO(PUES 00XIN)) SIEM[BW JO SISA[EUR dIeM[BW SUIAJISSE[D
9 03 speau sojdwes PUE ‘9181 UO01JI99p USIUaQ puB SNODI[eW 1S910] WOPUERI JJB)S PUB JIWURUAD 10] pue 3undalep (L102)
022 JoPsBIRA %L6 PUB %66 ‘%001 Jo sopdues (gg puB OINS ‘87 3pIomowRy A JUSSI[PIU] 10] IOMIWRL Y D72 YIRS
UOI}BPI[BA-SSOID SOLIBUI] SNODI[RW
%9726 sewueIrsoxd ues 10T [eonsne)s prepue)s MIU SU1I)IP
S90uaNbas-914q Jo asn 9JBIUOIS)9P PUER SILIBUIQ SNOWI[EW YAddR ‘SeAeg S9[BINIFXA SNOWI[BUI A[[eorjewoine (1002)
9¥eW 0] SWILIOF[R 1S9USIY PIp[RIA Goz'e sewweigoxd SATRU-[RPOWI) NI 9[qr10939pun A[snoraaid 0] I0maurely ‘w12
Surures] Jo UoISuIX;| SoAeg SATRU-IINIA 99Z'F J0 198 BIR([‘Sakeg QAIRN 3Un)d3)9p 0] POYRIA Sururu eyep y Z)NYIS
JUSTIUONAUD
VIA Surusisap ut
100 pue Aoe.mdde Sk ZIS *0)9 ‘sanbruyod) sisAfeue senbruyda) Surures|
[ONS SOLOW d0UE[Bq SWEBIS-U WNWIUIW SB Aep 10d o1EM[EW SIsATeue -TJUER SIEM[BUI ‘SOIUIOU0Dd QuIyoBW Y3NoIy} (6102)
0) Sa139jens Suuny, ¢ Sursn AJBINOJE 9,98 UOI[[IWU JUO SUISS3I0I] aane)enb y VIA JO 1d90u00 [9A0N VINUO £oAMS v 72 100()
S90IN0S3T
J0S1AIRdAY USY SUIAISSUOD UOIIR[OST
SIem[ewt 9} PUB SUOISU)XS Pue y[els ‘ANppy #102)
JO UOTJBOIJISSE[D %¥'29 JOAISS MOPRYS UOT}BZI[BN)IIA ANMIqe[edS SUDIOUS WR)SAS YA JTWBUAD ‘w12
pajewony JO 3urAes AJOWRN wo.y sojdures (00T aIeMpIRH Aq reass seroxduap -INAMVIA [PASua]
IU/SaLIRUIq
06 Jo uryoedun Jouksuoy 9gewr ssa001d SnoI[eW
Junpedun - S9[BINISXS SNODI[RW UOLBISNO-9(] 9y} dojs 0} USYM SJBWISS
sSndiod aremyewr ¢ey ‘sdex wreds woiy I9[UISSSESIP 0} 193311} [BINSIE)S SISATeue saLIeuIq
BRI v Jou AdU0y 9,£°¢6 SIBINDFXA SNOLIBU 0IJ-V(] WeI3-u AIeulq B pue paseq QIEM[BUT JOULIIU] (8002)
JO UOLJBIIJISSE[D Juppedun sndiod §2F ‘S9UBISUL SIRM[RW sonbruyosy onsumay e JuiAjdde oxoen J1e)s Suljqeus 10§ ‘w12
pajewiony arempew ureds 9 /.6 16T J0 sndi1o) uonn[osal [y UOIINIIXA PIUTRIF-9SIN0) NIOMSWER] B JIeyS
SYTRWSY UBULIOLID el sonbruyda], uonnqryuo)) BIpI UIR[jEN
£ £
= =8
S VgL
=L — SEB
=0 — HRE

38/42 (collapse

Antivirus Result

nProtect Win32.Sality.E
CAT-QuickHeal None

K7AntiVirus Virus

TheHacker W32/Sality(rp).|
VirusBuster Win32.Sality.L
NOD32 Win32/Sality.NAE
F-Prot W32/Sality. K
Symantec W32 HLLP Sality.O
Norman W32/Sality.N
ByteHero None
TrendMicro-HouseCall PE_SALITY.AE
Avast Win32:Sality-U
eSafe Win32.Sality.gen
ClamAV W32 Sality.N
Kaspersky Virus.Win32.Sality.

Analysis of
stegomalware

111

Table 3.
Sample results of
analysis of
executable file

Besides disassembling, it is also widely used in debugging, analysing and manipulating
binary files. Bokken, a front-end application, can also be used to support the process, and it
shows the flowgraph of the binaries after disassembling. Hexdump tab and file info tab can
be viewed in Bokken. At this point, dynamic analysis can be done with Cuckoo sandbox to
give details of the behaviour of the malware in terms of what it does in the system and what
changes it makes. Cuckoo uses various reporting formats, such as human-readable format,
MAEC (malware attribute enumeration and characterization) format and can also export data
reports to other formats. Once reports have been produced from a sandboxing tool such as
Cuckoo in a human readable format in natural language, it becomes easier to augment the
results by applying machine learning techniques to the process to improve on the quality of
malware analysis for further instances.

3.2 Steganalysis
A scanning method is proposed that can be used to detect the presence of stegomalware
embedded in JPEG images, the analysis and reporting of the findings from the data as shown in
Figures 1 and 2. The method is mainly focused on steganalysis of images with the intent of
exposing the presence of hidden malware in an image, extraction thereof and analysis of the
data if malware is indeed present. This is proposed to aid in the de-obfuscation process focusing
on stegomalware. The process involves loading of the image to be scanned into
memory, followed by assignment of a unique identifier so that if the same or a similar image
with a different file name is also scanned during the same session, there will be no redundancy.
The whole procedure can be applied in the same manner for all images with the same identifier.
This improves the efficiency of the whole procedure. The steganalysis algorithms (chi-
square attack, visual detection, histogram analysis) are then used to check if the image has
any steganography artefacts inherent. These artefacts are any identifiable signs or properties
of the image that could be signs of the presence of steganography implemented on it. If this is
not so, an image threat Level is then assigned and set to 0 if no steganography is identified.
However, in the case of suspicious files, which could either be executable or non-executable,
the scanner would attempt to extract the data from the stego-image and analyse the headers
of the retrieved data to check for “magic numbers” which are unique identifiers describing the

IEOM
52

112

Figure 1.
Proposed scanning
method activity
diagram

Figure 2.
Scanning process

Acquire Image

Assign Unique ID to Image

Load Statistical Detection
Steganalysis Algorithms

Check for Steganography Ar(ifact9

heck if all Steganalysis
algorithms
have been tested

Set Image Threat Level =0)< No Artifacts

Artifacts Present
Retrieve and extract
embedded data

Gheck for Magic Numbers in extracted dat@

No known
Magic Number

Set Image Threat Level = 1
based on File Type
Magic Number Present

Gheck if extracted File is in PE formaD

Set Image
Threat Level = 2

PE File

Non-PE File

Unpack obfuscated program

@ather data on unpacked prograer

Go to Next Image in Directory

—Henerate Tabulated Report on Findinga

SCANNING TOOL

JPEG FILE

IMAGE DATA

STEGANOGRAPHY

OUTPUT AND
GRAPH
PLOTTING

file type and are located in a file’s header. Usually, executable files such as .exe and .dll files
are the most suspicious. Where the files are non-executable, a threat level of 1 is assigned
signifying an intermediary threat potential. In the case of executable data, commonly known
as portable executable (PE) format, the image threat level is set to the highest level of 2.
A command is then run on the extracted file, and it will return the kind of packer used on the
file as well as its basic properties such as size, and then a report is subsequently generated
showing the findings. The scanning process is shown in Figure 2.

The concept of machine learning was introduced into the architecture of the research
(Shoniwa and George, 2015). After the steganalysis has been performed to determine if
the embedded files contain malicious software, machine learning was then applied to
determine what exact form of malware was embedded in the image. The primary flaw
with the previous approach was that it only applied to static analysis of malware in that a
signature was generated for each extracted file and then compared to the virus total
database of known malware signatures. However, the implementation of machine
learning helps overcome that flaw. This is because all the indicators of compromise (IoC)
generated by an executing malware are then tested against a known data set of various
malware. These IoCs include IP addresses connected to, URLs accessed, files created,
registry keys created as well as new paths and folders added. These IoCs are collected
from the Cuckoo sandbox which executes the suspected malicious files and produces
output which includes these IoCs. A trained data set can then be used to effectively
determine which files are indeed malicious even though they may not have known
signatures in any antiviral database.

3.3 Machine learming

Machine learning, which endows computers with the “ability to learn without being explicitly
programmed” (Lee et al., 2017; Munoz, 2012), comes in handy to aid in the automatic detection
of malware. ML achieves this by applying techniques that improve performance by reducing
false positives (Gavrilut ef al, 2009). A typical malware detection algorithm is shown in
Figure 3. This is supervised learning applied to detection of malware, a classification
problem. Examples of benign and malicious executables are passed to train a machine
learning algorithm to produce a predictive model to use in the second leg to detect new
instances of unknown executables. This can now be categorized as either benign or malicious
with the aim of achieving lowest false positive rate. Malware detection techniques are either
signature based or anomaly based. This applies to signature-based techniques for malware
detection, which depend upon the known signatures of the malware. If a known signature is
detected, then the executable is labelled as malicious.

i —
benign
executables |

L N Unknown
] lraining > Predictive model Exccutable
- L xecutables
malicious

executables |- i
J

Correct Prediction
benign/malicious

Analysis of
stegomalware

113

Figure 3.
Supervised machine
learning algorithm for
malware detection

IEOM
52

114

Figure 4.
Hybrid framework for
malware analysis

4. A hybrid malware analysis using supervised and unsupervised machine
learning

Static malware analysis works well with known malware signatures. However, the challenge
comes in the case of zero-day malware detection where there are no known signatures.
Anomaly-based methods become more potent as they depend upon analysing and profiling the
behaviour observed as anomalous which is malicious or normal with statistical or unsupervised
learning methods. A hybrid malware analysis framework shown in Figure 4 which
incorporates both dynamic and static analysis applying a stacked model for unsupervised
and supervised machine learning, is proposed. Malware authors use techniques such as
wrappers, encryption and compression and steganography for obfuscation to hide malware
code within executable files so that it evades detection by antivirus software and suppresses
any reverse engineering attempt by the malware analysis. In the first part of the framework,
executable binaries are presented for analysis in any or a combination of the forms highlighted
above. Both dynamic and static analysis is difficult to perform under the circumstances.

In the case of images, the steganalysis process described in Section 3.1 ensues within the
virtual environment. For other binaries, the packed executables have to go through the
unpacking or de-obfuscation process. This decompresses the executables and also decrypts
in the case of encrypted executables. Depending on how the malware has been embedded in
the executable, other processes that will happen within the virtual environment include
disassembling and decoupling to expose the code and enable dynamic analysis. An
unsupervised learning algorithm is then applied to profile the behaviour of the malware. This
process applies clustering methods which are able to determine behaviour that is anomalous

Virtual Environment

Packed De-obfuscation o
lencrvoted i Unsupervised
yp Unpac ““‘-;’ Learning Model
executables Decompression
Decryption
Disassemble v
Decompile

Profiled I
executables

Steganalysis

Supervised Training

Algorithm

v

Unknown
Executables

Predictive Model

l

Correct Prediction
benign/malignant

and that which is normal. It then categorizes the binaries according to the identified patterns
of behaviour. The output are the profiled executables. Supervised training is applied with the
profiled executables as the training data. This is part of the static analysis process which
involves analysing the profiled executable files without executing them. A supervised machine
learning model is applied to learn the profiles which are anomalous or normal. Thus, it extracts
useful information from the binary to classify it as either benign or malignant. Now new
instances of unpacked executables can then be classified as either benign or malicious by
feeding it into the predictive model. The model is expected to discover the patterns exposed by
the executable binaries from what it has learnt in the training with the profiled executables.

5. Discussion

A method for analysis of images to detect presence of stegomalware is presented. This
method is applied to further support a hybrid framework which implements a stacked
unsupervised and supervised machine learning model for malware analysis. This framework
seeks to profile files based on behaviour that is deemed as normal and that which is
anomalous in the presence of malware, catering for both dynamic and static malware analysis
of executable binaries using machine learning. unsupervised learning algorithm supports
dynamic analysis as executable binaries are unpacked, making it possible to create profiles
for the files. This is important as malware behaviour can be identified instead of dependency
upon signatures alone which is not adequate to detect zero-day malware instances. The
output then passes on to the supervised learning algorithm which supports static analysis
whereby the profiled files become input to a predictive model malware detection. This
combination of various methods for malware analysis is expected to yield better results
towards protection of systems. This may help to detect stealth malware attacks and reduce
the risk of extensive damage to the systems.

The proposed hybrid framework is the earliest of efforts on the roadmap by the
researchers to contribute towards this important area of cyber security. The current work will
culminate in the creation of the scanning tool integrated with supervised and unsupervised
machine learning algorithms. In addition to simple machine learning methods, ensemble
machine learning and deep learning methods shall also be tested in future work.

6. Conclusion

The research work revealed that, as techniques for introducing malware in systems and
evading detection continue to evolve at a fast pace, there is need to exert more effort
towards improving defence mechanisms and safeguards as well as detection techniques to
identify presence of malware. More stealth detection techniques are being developed to
improve on the efficiency thereof. Dynamic and static malware analysis techniques are
commonly applied with hybrid techniques, yielding better results by harnessing the
strengths of the two types of analysis. Malware authors aim to bypass the defences by
applying techniques such as obfuscation, anti-debugging, anti-disassembling, sandbox
evasion, antivirus evasion and so forth. A proposed method for de-obfuscation and
steganalysis was presented to identify malware embedded in images. A hybrid framework
for unsupervised and supervised machine learning was proposed to enable dynamic
analysis to be performed in a virtual environment to prevent execution of malware directly
in the system which would harm the system. Implementation and validation shall be done
in the future works.

References

Baker, K. (2020), “Malware analysis”, available at: https://www.crowdstrike.com/epp-101/malware-
analysis/

Analysis of
stegomalware

115

https://www.crowdstrike.com/epp-101/malware-analysis/
https://www.crowdstrike.com/epp-101/malware-analysis/

IEOM
52

116

Bashari Rad, B.,, Masrom, M. and Ibrahim, S. (2012), “Camouflage in malware: from encryption to
metamorphism”, International Journal Of Computer Science And Network Security ([JCSNS),
Vol. 12 No. 8, pp. 74-83, available at: http://paper.ijcsns.org/07_book/201208/20120813.pdf

Bhojani, N. (2014), “Malware analysis”. doi: 10.13140/2.1.4750.6889.

Chumachenko, K. (2017), “Machine learning methods for malware detection and classification”,
available at: https://core.ac.uk/download/pdf/80994982.pdf

Distler, D. (2007), Maware Analysis: An Introduction, SANS Institute, available at: https:/sansorg.
egnyte.com/dl/7WQkeUbSPW

Gavrilut, D., Cimpoesu, M., Anton, D. and Ciortuz, L. (2009), “Malware detection using machine
learning”, Proceedings of the International Multiconference on Computer Science and
Information Technology, IMCSIT ‘09, Vol. 4, pp. 735-741, doi: 10.1109/IMCSIT.2009.5352759.

Kendall, K. and Mcmillan, C. (2007), “Practical malware analysis”, Network Security. doi: 10.1016/
S51353-4858(12)70109-5.

Komatwar, R. and Kokare, M. (2021), “A survey on malware detection and classification”, Journal of
Applied Security Research, Vol. 16 No. 3, pp. 390-420, doi: 10.1080/19361610.2020.1796162.

Lee, A., Taylor, P. and Kalpathy-Cramer, J. (2017), “Machine learning has arrived!”, Ophthalmology,
Vol. 124 No. 12, pp. 17261728, doi: 10.1016/j.0phtha.2017.08.046.

Lengyel, T.K.,, Maresca, S., Payne, B.D., Webster, G.D., Vogl, S. and Kiayias, A. (2014), “Scalability,
fidelity and stealth in the DRAKVUF dynamic malware analysis system”, ACM International
Conference Proceeding Series, 2014-Decem(December), pp. 386-395, doi: 10.1145/2664243.
2664252.

Min, B. and Varadharajan, V. (2014), “Feature-distributed malware attack: risk and defence”, in
Kutytowski, M. and Vaidya, J. (Eds), Computer Security - ESORICS 2014, ESORICS 2014, Lecture
Notes in Computer Science, Springer, Cham, Vol. 8713, doi: 10.1007/978-3-319-11212-1_26.

Munoz, A. (2012), “Machine learning and optimization”, Computer Science, available at: https://www.
semanticscholar.org/paper/Machine-Learning-and-Optimization-Mufioz/7fbba79630b5a09dd66
ab13f00c3aefaa56cf268

Okane, P., Sezer, S. and McLaughlin, K. (2011), “Obfuscation: the hidden malware”, IEEE Security and
Privacy, Vol. 9 No. 5, pp. 41-47, doi: 10.1109/MSP.2011.98.

Oktavianto, D. and Muhardianto, 1. (2013), Cuckoo Malware Analysis Analyze Malware Using Cuckoo
Sandbox, Packt Publishing.

O'Meara, K., Shick, D., Spring, J. and Stoner, E. (2016), “Malware capability development patterns
respond to defenses: two case studies executive summary”, Software Engineering Institute,
Carnegie Mellon University, available at: https://resources.sei.cmu.edu/asset_files/whitepaper/
2016_019_001_453290.pdf

Rautmare, C. (2020), “Visa alert: POS malware attacks persist - BankInfoSecurity”, available at: https:/
www.bankinfosecurity.com/visa-alert-pos-malware-attacks-persist-a-15126

Schultz, M.G., Eskin, E., Zadok, E. and Stolfo, S.J. (2001), “Data mining methods for detection of new
malicious executables”, Proceedings of the IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 38-49, doi: 10.1109/secpri.2001.924286.

Sethi, K., Chaudhary, S., Tripathy, B. and Bera, P. (2017), “A novel malware analysis for malware
detection and classification using machine learning algorithms”, pp. 107-113, doi: 10.1145/
3136825.3136883.

Sharif, M., Yegneswaran, V., Saidi, H., Porras, P. and Lee, W. (2008), “Eureka: a framework for
enabling static malware analysis”, Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Biomnformatics), Vol. 5283,
pp. 481-500, doi: 10.1007/978-3-540-88313-5-31.

Shoniwa, R.T.R. and George, G. (2015), “Design of application to detect images embedded with
malicious programs”, International Journal of Science and Research (IJSR), Vol. 4 No. 3,
pp. 1899-1903, available at: https://www.ijsr.net/get_abstract.php?paper_id=SUB152465

http://paper.ijcsns.org/07_book/201208/20120813.pdf
https://doi.org/10.13140/2.1.4750.6889
https://core.ac.uk/download/pdf/80994982.pdf
https://sansorg.egnyte.com/dl/7WQkeUbSPW
https://sansorg.egnyte.com/dl/7WQkeUbSPW
https://doi.org/10.1109/IMCSIT.2009.5352759
https://doi.org/10.1016/S1353-4858(12)70109-5
https://doi.org/10.1016/S1353-4858(12)70109-5
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1016/j.ophtha.2017.08.046
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1007/978-3-319-11212-1_26
https://www.semanticscholar.org/paper/Machine-Learning-and-Optimization-Mu�oz/7fbba79630b5a09dd66ab13f00c3aefaa56cf268
https://www.semanticscholar.org/paper/Machine-Learning-and-Optimization-Mu�oz/7fbba79630b5a09dd66ab13f00c3aefaa56cf268
https://www.semanticscholar.org/paper/Machine-Learning-and-Optimization-Mu�oz/7fbba79630b5a09dd66ab13f00c3aefaa56cf268
https://www.semanticscholar.org/paper/Machine-Learning-and-Optimization-Mu�oz/7fbba79630b5a09dd66ab13f00c3aefaa56cf268
https://doi.org/10.1109/MSP.2011.98
https://resources.sei.cmu.edu/asset_files/whitepaper/2016_019_001_453290.pdf
https://resources.sei.cmu.edu/asset_files/whitepaper/2016_019_001_453290.pdf
https://www.bankinfosecurity.com/visa-alert-pos-malware-attacks-persist-a-15126
https://www.bankinfosecurity.com/visa-alert-pos-malware-attacks-persist-a-15126
https://doi.org/10.1109/secpri.2001.924286
https://doi.org/10.1145/3136825.3136883
https://doi.org/10.1145/3136825.3136883
https://doi.org/10.1007/978-3-540-88313-5-31
https://www.ijsr.net/get_abstract.php?paper_id=SUB152465
https://www.ijsr.net/get_abstract.php?paper_id=SUB152465

Suarez-Tangil, G., Tapiador, J.E. and Peris-Lopez, P. (2014), “Stegomalware: playing hide and seek Analysis of
with malicious components in smartphone Apps”, Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8957, stegomalware
pp. 496-515, doi: 10.1007/978-3-319-16745-9_27.
Ucci, D., Aniello, L. and Baldoni, R. (2019), “Survey of machine learning techniques for malware
analysis”, Computers and Security, Vol. 81, pp. 123-147, doi: 10.1016/j.cose.2018.11.001.
117

Corresponding author
Prudence Kadebu can be contacted at: pkadebu@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

https://doi.org/10.1007/978-3-319-16745-9_27
https://doi.org/10.1016/j.cose.2018.11.001
mailto:pkadebu@gmail.com

	A hybrid machine learning approach for analysis of stegomalware
	Introduction
	Objectives

	Literature review
	Methods
	Cuckoo sandbox
	Steganalysis
	Machine learning

	A hybrid malware analysis using supervised and unsupervised machine learning
	Discussion
	Conclusion
	References

