To read the full version of this content please select one of the options below:

A distributed real-time data prediction framework for large-scale time-series data using stream processing

Kehe Wu (School of Control and Computer Engineering, North China Electric Power University, Beijing, China)
Yayun Zhu (School of Control and Computer Engineering, North China Electric Power University, Beijing, China)
Quan Li (School of Control and Computer Engineering, North China Electric Power University, Beijing, China)
Ziwei Wu (School of Control and Computer Engineering, North China Electric Power University, Beijing, China)

International Journal of Intelligent Computing and Cybernetics

ISSN: 1756-378X

Article publication date: 12 June 2017

Abstract

Purpose

The purpose of this paper is to propose a data prediction framework for scenarios which require forecasting demand for large-scale data sources, e.g., sensor networks, securities exchange, electric power secondary system, etc. Concretely, the proposed framework should handle several difficult requirements including the management of gigantic data sources, the need for a fast self-adaptive algorithm, the relatively accurate prediction of multiple time series, and the real-time demand.

Design/methodology/approach

First, the autoregressive integrated moving average-based prediction algorithm is introduced. Second, the processing framework is designed, which includes a time-series data storage model based on the HBase, and a real-time distributed prediction platform based on Storm. Then, the work principle of this platform is described. Finally, a proof-of-concept testbed is illustrated to verify the proposed framework.

Findings

Several tests based on Power Grid monitoring data are provided for the proposed framework. The experimental results indicate that prediction data are basically consistent with actual data, processing efficiency is relatively high, and resources consumption is reasonable.

Originality/value

This paper provides a distributed real-time data prediction framework for large-scale time-series data, which can exactly achieve the requirement of the effective management, prediction efficiency, accuracy, and high concurrency for massive data sources.

Keywords

Acknowledgements

This paper is supported by “the Fundamental Research Funds for the Central Universities (2015XS72).”

Citation

Wu, K., Zhu, Y., Li, Q. and Wu, Z. (2017), "A distributed real-time data prediction framework for large-scale time-series data using stream processing", International Journal of Intelligent Computing and Cybernetics, Vol. 10 No. 2, pp. 145-165. https://doi.org/10.1108/IJICC-09-2016-0033

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited