To read this content please select one of the options below:

The role of demand response in residential electricity load reduction using appliance shifting techniques

Timothy King Avordeh (Department of Banking and Finance, University of Professional Studies, Accra, Ghana)
Samuel Gyamfi (Department of Energy and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana)
Alex Akwasi Opoku (Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana)

International Journal of Energy Sector Management

ISSN: 1750-6220

Article publication date: 15 December 2021

Issue publication date: 11 May 2022




Some of the major concerns since the implementation of smart meters (prepaid meters) in some parts of Ghana is how electricity consumers have benefited from data obtained from these meters by providing important statistics on electricity-saving advice; this is one of the key demand-side management methods for achieving load reduction in residential homes. Appliance shifting techniques have proved to be an effective demand response strategy in load reduction. The purpose of this paper is therefore to help consumers of electricity understand when and how they can shift some appliances from peak to off-peak and vice versa.


The research uses an analysis technique of Richardson et al. (2010). In their survey on time-of-use surveys to determine the usage of electricity in households as far as appliance shifting was concerned, this study allowed for the assessment of how the occupants’ daily activities in households affect residential electricity consumption. Fell et al. (2014) modeled an aggregate of electricity demand using different appliances (n) in the household. The data for the peak time used in this study were identified from 05:00 to 08:00 and 17:00 to 21:00 for testing the load shifting algorithms, and the off-peak times were pecked from 10:00 to 16:00 and 23:00. This study technique used load management considering real-time scheduling for peak levels in the selected homes. The household devices are modeled in terms of controlled parameters. Using this study’s time-triggered loads on refrigerators and air conditioning systems, the findings suggested that peak loads can be reduced to 45% as a means of maintaining the simultaneous quality of service. To minimize peak loads to around 35% or more, Chaiwongsa and Wongwises (2020) have indicated that room air conditioning and refrigerator loads are simpler to move compared to other household appliances such as cooking appliances. Yet in conclusion, this study made a strong case that a decrease in household peak demand for electricity is primarily contingent on improvements in human behavior.


This study has shown that appliance load shifting is a very good way of reducing electrical consumption in residential homes. The comparative performance shows a moderate reduction of 1% in load as was found in the work done by Laicaine (2014). The results, however, indicate that load shifting to a large extent can be achieved by consumer behavioral change. The main response to this study is to advise policymakers in Ghana to develop the appropriate demand response and consumer education towards the general reduction in electrical load in domestic households. The difficulty, however, is how to get the attention of consumer’s on how to start using appliances with less load at peak and also shift some appliances from off-peak times. By increasing consumer knowledge and participation in demand response, it is possible to achieve more efficiency and flexibility in load reduction. The findings were benchmarked with existing comparison studies but may benefit from the potential production of structured references. However, the findings show that load shifting can only be done by modifying consumer actions.

Research limitations/implications

It should be remembered that this study showed that the use of appliances shifting in residential homes results in load reduction benefits for customers, expressed as savings in electricity prices. The next step will be to build on this cost/benefit study to explain and measure how these reductions transform into net consumer gains for all Ghanaian households.


Load shifting will include load controllers in the future, which would automatically handle electricity consumption from various appliances in the home. Based on the device and user needs, the controllers can prioritize loads and appliance usage. The algorithms that underpin automatic load controllers will include knowledge about the behaviors of groups of end users. The results on the time dependency of activities may theoretically inform the algorithms of automatic demand controllers.


This paper addresses an important need for the country in the midst of finding solutions to an unending energy crisis. This paper presents demand response to the Ghanaian electricity consumer as a means to help in the reduction of load in residential homes. This is a novel research as no one has at yet carried out any research in this direction in Ghana. This paper has some new information to offer in the field of demand in household electricity consumption.



Avordeh, T.K., Gyamfi, S. and Opoku, A.A. (2022), "The role of demand response in residential electricity load reduction using appliance shifting techniques", International Journal of Energy Sector Management, Vol. 16 No. 4, pp. 605-635.



Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles