Apparel-based deep learning system design for apparel style recommendation

Congying Guan (Department of Design, Northumbria University, Newcastle upon Tyne, UK)
Shengfeng Qin (Department of Design, Northumbria University, Newcastle upon Tyne, UK)
Yang Long (Open Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK)

International Journal of Clothing Science and Technology

ISSN: 0955-6222

Publication date: 3 June 2019



The big challenge in apparel recommendation system research is not the exploration of machine learning technologies in fashion, but to really understand clothes, fashion and people, and know what to learn. The purpose of this paper is to explore an advanced apparel style learning and recommendation system that can recognise deep design-associated features of clothes and learn the connotative meanings conveyed by these features relating to style and the body so that it can make recommendations as a skilled human expert.


This study first proposes a type of new clothes style training data. Second, it designs three intelligent apparel-learning models based on newly proposed training data including ATTRIBUTE, MEANING and the raw image data, and compares the models’ performances in order to identify the best learning model. For deep learning, two models are introduced to train the prediction model, one is a convolutional neural network joint with the baseline classifier support vector machine and the other is with a newly proposed classifier later kernel fusion.


The results show that the most accurate model (with average prediction rate of 88.1 per cent) is the third model that is designed with two steps, one is to predict apparel ATTRIBUTEs through the apparel images, and the other is to further predict apparel MEANINGs based on predicted ATTRIBUTEs. The results indicate that adding the proposed ATTRIBUTE data that captures the deep features of clothes design does improve the model performances (e.g. from 73.5 per cent, Model B to 86 per cent, Model C), and the new concept of apparel recommendation based on style meanings is technically applicable.


The apparel data and the design of three training models are originally introduced in this study. The proposed methodology can evaluate the pros and cons of different clothes feature extraction approaches through either images or design attributes and balance different machine learning technologies between the latest CNN and traditional SVM.



Guan, C., Qin, S. and Long, Y. (2019), "Apparel-based deep learning system design for apparel style recommendation", International Journal of Clothing Science and Technology, Vol. 31 No. 3, pp. 376-389.

Download as .RIS



Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.