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Abstract
Purpose – With the rapid development of internet technology, open online social networks provide a broader
platform for information spreading. While dissemination of information provides convenience for life, it also brings
many problems such as security risks and public opinion orientation. Various negative, malicious and false
information spread across regions, which seriously affect social harmony and national security. Therefore, this
paper aims tominimize negative information such as online rumors that has attracted extensive attention. Themost
existing algorithms for blocking rumors have prevented the spread of rumors to some extent, but these algorithms
are designed based on entire social networks, mainly focusing on themicrostructure of the network, i.e. the pairwise
relationship or similarity between nodes. The blocking effect of these algorithms may be unsatisfactory in some
networks because of the sparse data in themicrostructure.
Design/methodology/approach – An algorithm for minimizing the influence of dynamic rumor based
on community structure is proposed in this paper. The algorithm first divides the network into communities,
and integrates the influence of each node within communities and rumor influence probability to measure the
influence of each node in the entire network, and then selects key nodes and bridge nodes in communities as
blocked nodes. After that, a dynamic blocking strategy is adopted to improve the blocking effect of rumors.
Findings – Community structure is one of the most prominent features of networks. It reveals the organizational
structure and functional components of a network from a mesoscopic level. The utilization of community structure
can provide effective and rich information to solve the problem of data sparsity in the microstructure, thus
effectively improve the blocking effect. Extensive experiments on two real-world data sets have validated that the
proposed algorithm has superior performance than the baseline algorithms.
Originality/value – As an important research direction of social network analysis, rumor minimization has a
profound effect on the harmony and stability of society and the development of social media. However, because the
rumor spread has the characteristics of multiple propagation paths, fast propagation speed, wide propagation area
and time-varying, it is a huge challenge to improve the effectiveness of the rumor blocking algorithm.
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1. Introduction
In recent years, the rapid development of online social networks, such as Weibo, WeChat
and Twitter has brought about changes in the way of social communication. Hundreds of
millions of people have shared messages with each other through social platforms, so the
speed of information exchange amongst people have been greatly improved. On the one
hand, these social platforms provide great convenience for the dissemination of positive
messages (Montanari and Saberi, 2010), but on the other hand, they also become the main
channels for spreading malicious rumors or misinformation. To reduce the impact of
negative rumors, once they are detected, appropriate measures should be taken in time to
prevent the spread of information and narrow the scope of its spread. As an important
research direction of social network analysis, rumor minimization has a profound effect on
the harmony and stability of society and the development of social media. However, because
the rumor spread has the characteristics of multiple propagation paths, fast propagation
speed, wide propagation area and time-varying, it is a huge challenge to improve the
effectiveness of the rumor blocking algorithm.

The spread process of rumors is very similar to infectious diseases and computer viruses
(Nekovee et al., 2007). Many scholars have studied the spread of rumors in social networks
(Borge-Holthoefer and Moreno, 2012; Borge-Holthoefer and Meloni, 2013; Wang et al., 2012;
Zhao et al., 2012). Although the studies on minimizing negative rumors have achieved some
achievements, the depth and breadth of the study are not enough. For example, greedy
blocking algorithms, dynamic blocking algorithms (Wang et al., 2017), etc., these methods
control the spread of rumors to a certain extent. However, most of these methods are
designed based on the whole social network, which focuses on the microstructure of
the network, that is, pairwise relationships or similarity between nodes, resulting in the
blocking effect may be unsatisfactory in some networks because of the problem of sparse
data in microstructure.

As we all know, the community structure (Girvan and Newman, 2002) is a part of the
most prominent features of the network. It reveals the organizational structure and
functional components of the network and describes the structure of the network from the
mesoscopic level (Wang et al., 2016). For two nodes in the community, even if they have only
weak relationships in the microstructure because of data sparsity, their similarity will be
strengthened by the constraints of the community structure (Wang et al., 2017). In this
paper, we propose a community-based framework for minimizing the influence of dynamic
rumor (CoF-MIDR). The community structure not only reflects the behavior characteristics
of individuals in the network and the associated information between the communities but
also simplifies the entire network into hierarchical relationships between communities,
which is conducive to discover bridge nodes who play the important role in spreading
rumors from one community to another. In addition, the utilization of community structure
can provide effective and rich information to solve the problem of data sparsity in the
microstructure. Considering the interaction between the nodes in the community and
the important relationship between the communities is conducive to accurately measure the
influence of the nodes. Based on the results of the node influence measurement with the
community structure, the key nodes in intra-communities and the bridge nodes in inter-
communities are selected as the blocked nodes. After that, a dynamic blocking strategy is
adopted to expose fewer people to the rumor information, so as to reduce the number of
rumor infections as much as possible and improve the rumor blocking effect. For example,
given a network as shown in Figure 1(a), the blue node represents the source of the rumor
(rumor publisher) and the black hollow node represents the uninfected node (not accept
rumors). Figure 1(b) shows the normal propagation process, and the black solid node
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indicates the infected node (accept rumors). Figure 1(c) is a network without community
structure, using the method proposed by Wang et al. (2017) to select three key nodes (red
nodes) for blocking (cutting off all propagation paths with its neighbors, which indicated by
blue dashed lines). Figure 1(d) is a network with community structure, and then select the
key nodes (red nodes) and the bridge nodes (yellow nodes) to block. Comparing Figure 1(c)
with 1(d), the number of infected nodes in Figure 1(d) is reduced, so blockage based on
community structure can further reduce infected nodes.

Themajor contributions of this paper are summarized as follows:
� A method for measuring the influence of nodes based on the community structure

and the influence probability of rumor between nodes is proposed.
� We propose a CoF-MIDR algorithm, which selects the blocked nodes and adopts a

dynamic blocking strategy to minimize the influence scope of rumors.
� Extensive experiments are carried out on two real-world data sets. The

experimental results indicate that the proposed algorithm has superior performance
than the baseline algorithms according to the evaluation metric of the infection rate.

The rest of this paper is organized as follows: Section 2 introduces the related work, Section
3 details the CoF-MIDR algorithm, Section 4 gives the experiment and results, and finally,
we conclude the work in Section 5.

2. Related work
At present, the rumor blocking problem has aroused widespread concern in academic
communities. Many scholars have studied the spreading process of rumors and proposed
methods to reduce the influence area of rumors. Based on the susceptible-infected-removed
model, Zhao et al. (2012) proposed a susceptible-infected-hibernator-removed model with the
forgetting mechanism and the recall mechanism. Nguyen et al. (2012) defined the multi-
competition independent cascade model and the influence propagation restriction problem,
extended the independent cascade model to the MCICM model and gave an approximate
solution algorithm for the EIL problem. As for the research on rumor blocking strategy,
Budak and Agrawal (2011) introduced the concept of “good” movement in social networks
and offset the negative effects of “bad” movements through “good” movements. Kimura
et al. (2009) studied the problem of minimizing malicious rumor spread by blocking a limited
number of links in social networks. Fan et al. (2013) studied the rumor blocking with the
lowest cost in social networks, introduced the concept of “protector,” and tried to select
the minimum number of “protectors” to limit the influence of rumors by triggering the

Figure 1.
The process of rumor

propagation and
blocking, (a) original
network; (b) normal

propagation;
(c) blocking critical

nodes; and
(d) blocking nodes

based on
communities
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protection cascade of rumors. Considering the transient nature of the rumor propagation
process and the user experience utility function, Wang et al. (2017) improved the greedy
algorithm and proposed a dynamic blocking algorithm. Tong et al. (2018) studied the
problem of generating multiple positive cascades to block rumors and minimize rumor
propagation, proposed a peer-to-peer independent cascading model for private socialization
and analyzed the rumor blocking effect. Zheng and Pan (2018) proposed a greedy algorithm
based on minimum vertex cover to minimize the influence of rumors, assuming the rumor
originated from a community in social network and considered the optimization problem of
rumor minimum cost blocking. Yan et al. (2019) studied a rumor propagation minimization
problem, proposed the submodule lower bound and the submodule upper bound of the
objective function and minimized rumor propagation by removing an edge set from the
network. Considering the degree of response of each user to rumors, Wu and Huang (2018)
proposed a new STCIR model to study the dynamic propagation of rumors, which suppress
rumors by forwarding correct information. Chen (2019) considered the calm period before
the propagator became an agitator and the mobility of the crowd in a certain area, and
proposed a novel rumor propagation model to explore the control of rumor propagation in
emergencies.

Although these methods have achieved the role of suppressing the spread of rumor
information, most of them are designed for the entire social network, mainly focusing on the
microstructure of the network, that is, the paired relationship or similarity between nodes,
while ignoring the mesoscopic structure of the network. This may result in poor blocking
effect in some networks because of the data sparsity in microstructure.

3. Community-based framework for minimizing the influence of dynamic
rumor algorithm
In this paper, we propose a CoF-MIDR. The CoF-MIDR algorithm is divided into three
stages. In the first stage, a community detection algorithm is used to obtain the community
structure for the whole social network. The second stage measures the influence of each
node in the community based on the community structure, and then select the nodes with
greater influence and the bridge nodes linking two communities as the blocked node-set.
The dynamic blocking strategy is implemented on the blocked node-set in the third stage.

3.1 Community detection
The community structure with nodes aggregation is one of the most prominent features of
the social network. In this paper, we first divide the social network into multiple
communities by a community detection algorithm and then select the need to be blocked
nodes based the community structure. At present, there are abundant study achievements
on community detection, most of them are not only effective but also efficient, such as
Louvain algorithm (Blondel et al., 2008), GN algorithm (Girvan and Newman, 2002) and LPA
algorithm (Raghavan and Albert, 2007), one of them is used to divide the network in this
paper.

3.2 Blocked nodes selection
In this paper, we select the nodes with great influence to block. Therefore, we need to
measure the influence of each node.

Suppose a social network G is divided into m communities by community detection
algorithm, denoted as G = C1 | C 2 | . . . Ci [. . .]| Cm. The influence of the node u in Ci is
denoted as Iu (Ci). If node u is the rumor source, Iu (Ci) = 1, otherwise, it is calculated using
PageRank (Brin and Page, 1998) defined as equation (1).
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Iu Cið Þ ¼ a
X

v2N uð Þ
Iv Cið Þ
jN uð Þj þ

1� að Þ
N

(1)

Where v is the neighbor node of u, N (u) is the collection of neighbor nodes for node u in its
community,N is the total number of nodes. According to the literature (Brin and Page, 1998),
a is generally taken as 0.85.

The Iu (Ci) measures the importance of the node within the community Ci, reflecting the
authority, professionalism and popularity of the node in the community. However, it ignores
the influence of the relationship between nodes on the rumor propagation process. For
example, the high similarity between u and v indicates that v is more influenced by u, so that
v is more likely to receive and forward the information posted by u.

It is common that the attributes of a node can reflect the characteristics of the node, such
as gender, age, hobby, occupation and so on. Therefore, we use the attributes of nodes to
measure the similarity between nodes. Cosine similarity is the most commonly used method
of similarity measurement, which is applied in this paper to measure the similarity between
nodes u and v. It is defined as equation (2).

S_ valueu;v ¼

Xn
i¼1

uiviffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ui2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

vi 2

s (2)

Where u and v represent the two adjacent nodes within the same community, i = 1, 2 . . . . . .,
n represent the n attributes of the nodes. The value of S _ valuesuv is range from [0, 1], the
value close to 1 indicates that the two nodes are very similar, whereas the value close to 0
indicates that the two nodes are less similar.

The neighbor nodes set of u denoted asN (u). Therefore, the influence probability of node
u on its neighbor nodes is defined as equation (3).

pu ¼
X

v2N uð ÞS_ valueuv

jn uð Þj (3)

Iu (Ci) reflects the importance of a node within the community, while pu reflects the influence
probability on neighbors. Therefore, the total influence of node u is defined by combining
importance and influence probability, denoted as IIu (Ci).

IIu Cið Þ ¼ Iu Cið Þ � pu (4)

Based on the influence of nodes, key nodes and bridge nodes are selected as a need to be
blocked nodes in this paper. The key node refers to the node with large IIu (Ci), and the
bridge node means the one that has edge with nodes in the other community. The key node-
set and bridge node-set are defined as:

Definition 1 (key node-set). Given a network G = C1 | C2 | . . . | Cm with
m communities. Top k of IIu (Ci) is selected as the key nodes in community Ci, denoted as
Ui = (u1, u2,. . ., uk). The collection of key nodes in all communities is called the key node set
of the network, denoted asK=U1|U2| . . .|Um.
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Definition 2 (bridge node-set). Given a network G = C1 | C2 | . . . | Cm with m
communities. If the number of edges between node u [ Ci and other nodes in Ci is less than
the degree of the node u, the node u is called the bridge node of the community Ci. The
bridge node-set consists all bridge nodes in communities, denoted as B.

3.3 Dynamic blocking process
The process of rumor spread in the social networks usually consists of three stages,
from the ascending phase at the beginning of the spread, then to the peak period, and
finally, to the fading period. Considering the time-varying characteristics of rumor
spread, we use the dynamic blocking algorithm to block the selected nodes step by
step.

Algorithm 1Minimize the impact of dynamic rumors based on community structure
Input: a network G = (V, E)
Output: infection rate
1. The network G is divided into m communities by community

detection, G = C1| Cm| . . .| Cm
2. For j = 1 to T do
3. For i = 1 to m do
4. calculate the influence of nodes in the community by formula (1)
5. calculate the influence probability of the nodes by formula (2)

and (3)
6. calculate the total influence of nodes (II) by formula (4)
7. If j = 1
8. block (top.k1)| B
9. Else block top.k j

10. End if
11. End for
12. End for

The blocking process includes T time iterations. At the first block (j = 1), the algorithm
calculates the influence of each node, and then selects the key node set top.k1 from
each community, merges the bridge node-set B of each community as a set of blocked nodes
at j = 1. When j = 2, because of the changes in the network structure and infection state of
nodes, the influence II of the remaining nodes should be recalculated, and the algorithm
selects the key node set top.k2 from each community as a set of blocked nodes at j = 2.
Repeat this process until j =T.

Algorithm 1 is the whole process of the CoF-MIDR algorithm. Step 1 is to divide the
network intom communities. The time complexity is O (l), where l is the number of edges in
the network. Steps 4-6 calculate the influence of nodes. Steps 7-9 block the selected nodes.
Assuming that each community has n nodes, the time complexity ofT iterations isO (Tmn).
Therefore, the total time complexity of the algorithm isO (lþTmn).

4. Experimental evaluation
In this section, we verify the effectiveness of the CoF-MIDR algorithm, the impact of the
initial blocking time and the blocking duration on the blocking effect.

4.1 Experiment preparation
4.1.1 Data set. We use two data sets with attributes including Facebook and Rochester in
the process of experiments. The Facebook data set contains 4,039 nodes, 88,234 edges and
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1,403 attributes. The Rochester data set contains 4,563 nodes, 161,404 edges and 237
attributes. The detailed description information of these data sets is shown in Table I.

� Baseline algorithms.

We use normal propagation (NormalP) (Wang et al., 2017), greedy blocking (GreedyB)
(Wang et al., 2017), positive cascades blocking (PositiveCB) (Tong et al., 2018) and dynamic
blocking (DynamicB) (Wang et al., 2017) as the baseline algorithms in this paper. NormalP is
a normal propagation algorithm that does not consider any blocking strategy. Both GreedyB
and PositiveCB are static blocking methods, while DynamicB is a dynamic blockingmethod.
GreedyB is an improved algorithm based on greedy algorithms. When a rumor is detected, it
immediately selects nodes to block, trying to prevent further spread of rumors as quickly as
possible. PositiveCB selects the seed nodes to generate multiple positive cascades to
minimize the number of rumor active nodes. DynamicB gradually blocks the selected nodes
according to the update states of each round of nodes, instead of blocking them at the same
time.

� Evaluation metric.

The infection rate is used as the evaluation metric of the blocking effect, which is
defined as the proportion of the number of infected nodes in the total number of nodes
after each iteration in the process of rumor blocking. The low infection rate implies the
better blocking effect of the algorithm. The definition of infection rate is shown in
equation (5).

IR ¼ I_ num
N

(5)

where I _ num represents the number of infected nodes, andN represents the total number of
nodes in the network.

4.2 Experimental result
4.2.1 Effectiveness evaluation. In this section, to verify the effectiveness of the proposed
algorithm, we compare the rumor infection rate of GreedyB, DynamicB, PositiveCB and
CoF-MIDR on two data sets. In the experiment, we set the blocking rate (the proportion of
blocked nodes in the social networks) as 5, 10 and 15 per cent, respectively, and suppose the
rumor was discovered and blocked in the 5th iterations (blue dashed line). After several
experiments, it was found that the infection rate of all blocking algorithms reached an
almost steady state from 60th to 80th iteration. Therefore, the number of iterations was set
as 100 in all experiments.

In Figure 2, the solid blue line represents the normal spread of rumors. As the number of
iterations increases, the infection rate of the algorithms using the blocking strategy will be
reduced to a different extent than normal propagation. As can be seen from the result, the

Table I.
Details of the data

sets

Data sets Facebook Rochester

# nodes 4,039 4,563
# edges 88,234 161,404
# attribute 1,403 237
Average degree 21.8 35.4
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dynamic blocking algorithms have superior performance than the static blocking
algorithms, in which our proposed CoF-MIDR algorithm performs best, especially on the
Facebook data set. Therefore, with the mesoscopic structure information of the community,
we combine the influence of nodes in the community with the probability of rumor influence,
so that the influence of nodes can be measured more accurately, which is conducive to
preventing the spread of rumors. In the Rochester data set with the high average degree of
nodes because of the dense relationship of nodes, the rumor spreads too fast in the network

Figure 2.
Infection rate under
different blocking
algorithms
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and it is difficult to block them, resulting in similar results of these blocking algorithms in
this data set. However, the CoF-MIDR algorithm still achieves slightly superior performance
than baseline algorithms in this situation. In addition, because of the fast propagation speed
and wide propagation path of rumors, the ideal blocking effect cannot be achieved when
blocking rate is small, such as 5 per cent, especially in the dense network.

4.2.2 Impact of initial blocking time. In our experiments, it is generally assumed that a
message is diffused in the social network for a period of time, and then it is detected as a

Figure 3.
Infection rate for
different initial
blocking times
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rumor at a certain moment and the rumor blocking strategy is immediately launched to
prevent further spread of rumors. Obviously, in this process, the initial blocking time will
have a huge impact on the final rumor infection rate in the whole social network. In the
experiment in this section, initial blocking time is set to 5, 10 and 15, indicating that the
rumor was blocked at different stages of propagation. Figure 3 shows the blocking effect
with different initial blocking times. It can see that the Figures 3(a) and Figure 3(d) have the
lowest final infection rate, while Figures 3(c) and Figure 3(f) have the highest infection rate,
indicating that the earlier the rumor is prevented (initial blocking time = 5), the final rumor
infection will be lower. However, if the rumors are blocked at the intermediate stage (initial
blocking time = 10), the ability of all blocking algorithms to prevent further spread of
rumors is limited. In addition, if rumors are detected at a later time (initial blocking time =
15), all blocking strategies have little effect on the process of blocking rumor propagation,
resulting in a high final infection rate.

4.2.3 Impact of blocking duration. Figure 4 shows the impact of blocking duration on the
final rumor infection rate under the CoF-MIDR blocking algorithm. In this experiment, we
assume that the rumor is detected at the fifth iteration and begins to block, with the blocking
duration set to 10, 20 and 30. Figures 4(a) and Figures 4(b) show the rumor infection rates of
the two data sets for three different blocking durations, respectively.

As can be seen from Figure 4, the longer the node is blocked (blocking duration =
30), the lower the rumor infection rate. With the decrease in blocking duration, the
rumor infection rate is higher. However, as too long blocking duration may affect user
satisfaction, the blocking duration should not be too long. As a consequence, the study
of blocking duration is beneficial to the design of a rumor blocking strategy with lower
cost and better effect.

5. Conclusion
In this paper, we propose a CoF-MIDR. Using the characteristics of community structure, we
integrate the influence of nodes in the community and the influence probability of rumors to
measure the total influence of nodes, and then mine key nodes and bridge nodes in
communities as blocked nodes. The dynamic blocking strategy is adopted to improve the
blocking effect of the rumor. Experimental results on two real data sets show that the
proposed algorithm has superior performance.

The algorithm of this paper adopts user attributes to measure the similarity between
users, so as to estimate the probability of rumor infection. The attributes of the users in the

Figure 4.
Infection rate for
different blocking
duration (a)
Facebook; and (b)
Rochester
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data sets we are using are complete, but some data sets may have incomplete attributes of
the users in reality. Therefore, we will consider the impact of the absence of user attributes
on the rumor blocking effect in future work.
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