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Abstract
Purpose – Quantitative and spatial-explicit flood risk information is of great importance for strengthening
climate change adaptation and flood resilience. Shanghai is a coastal megacity at large estuary delta with
rising flood risks. This study aims to quantify the overall economic-societal risks of storm flooding and their
spatial patterns in Shanghai.
Design/methodology/approach – Based on multiple storm flood scenarios at different return periods,
as well as fine-scale data sets including gridded GDP, gridded population and vector land-use, a probabilistic
risk model incorporating geographic information system is used to assess the economic-societal risks of
flooding and their spatial distributions.
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Findings – Our results show that, from 1/200 to 1/5,000-year floods, the exposed assets will increase from
USD 85.4bn to USD 657.6bn, and the direct economic losses will increase from USD 3.06bn to USD 52bn. The
expected annual damage (EAD) of assets is around USD 84.36m. Hotpots of EAD aremainly distributed in the
city center, the depressions along the upper Huangpu River in the southwest, the north coast of Hangzhou
Bay, and the confluence of the Huangpu River and Yangtze River in the northeast. From 1/200 to 1/5,000-year
floods, the exposed population will rise from 280 thousand to 2,420 thousand, and the estimated casualties
will rise from 299 to 1,045. The expected annual casualties (EAC) are around 2.28. Hotspots of casualties are
generally consistent with those of EAD.
Originality/value – In contrast to previous studies that focus on a single flood scenario or a particular
type of flood exposure/risk in Shanghai, the findings contribute to an understanding of overall flood risks and
their spatial patterns, which have significant implications for cost-benefit analysis of flood resilience
strategies.

Keywords Shanghai, Economic and societal risk, Scenario-based probabilistic risk model,
Storm flooding

Paper type Research paper

1. Introduction
Cities located in coastal lowlands and estuarine deltas are growing and expanding much
faster than in other areas (Seto et al., 2011). Driven by climatic and non-climatic factors such
as sea level rise, ground subsidence and rapid growth of population and asset, coastal cities
are facing rising flood risks (Arnell and Gosling, 2014; Chan et al., 2018; Fang and Shi, 2019;
Tauzer et al., 2019). Flooding associated with extreme storm surges is among the most costly
and deadly hazards in densely populated and economically developed coastal cities (Cook
and Merwade, 2009). Storm flooding or storm-surge flooding, occurs when wind and low
pressure combine at the center of a storm, which pulls up water and carry it inland. Storm
flooding has become a significant concern in the risk assessment of coastal cities (Dube et al.,
2009; Peduzzi et al., 2012). Quantitative and spatially explicit flood economic-societal risk
information is of great importance for coastal cities to strengthen climate change adaptation
and flood resilience (Hinkel et al., 2018; Jongman, 2018; White et al., 2018; Fang et al., 2020).

Climate change is expected to make storm flooding more destructive in the coming
decades(Lin et al., 2012; Irish et al., 2014; Marsooli and Lin, 2020). First, rising sea levels will
raise the baseline elevations of waves and storm surges as thermal expansion and melting
ice caps continue. A small vertical rise in sea level will translate into a very large increase in
horizontal reach by storm surge, and thus will exacerbate the frequency and severity of
storm flooding (Hunter et al., 2013; Wu et al., 2017; Rasmussen et al., 2018). Studies show that
global mean sea level has been rising since the last century due to global warming and is
projected to reach 1 meter or more by the end of the 21st century (Dasgupta et al., 2009;
Rahmstorf, 2017; Grinsted and Christensen, 2021). Second, a warmer ocean will intensify
tropical storm activity and heighten storm surges. Continued sea-surface warming will lead
to more intense tropical storms with higher peak wind speeds and heavier precipitation
(Webster et al., 2005; IPCC, 2007; Emanuel et al., 2008; Knutson et al., 2010; Bhatia et al.,
2018). IPCC (2007) cites a trend toward longer duration and greater intensity of storms since
the mid-1970s, and a strong correlation with the upward trend in tropical sea surface
temperatures. As storm surges increase under climate change, they will create more
devastating flood conditions in coastal areas and adjacent low-lying areas, with more
population and assets at risk. Therefore, it is essential for coastal cities to focus on risk
assessment andmanagement of storm flooding under climate change.

The economic risk can be expressed by the amount of money likely to be lost as a
consequence of flooding (Winsemius et al., 2013). Previous studies usually calculate the
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direct economic losses based on either GDP aggregated by administrative divisions
(Winsemius et al., 2013; Ward et al., 2014), or land values of different land use categories
(Jonkman et al., 2008; Merz et al., 2010; Hanson et al., 2011; Jongman et al., 2012; Yin et al.,
2012b; Du et al., 2020), which is not sufficient to describe the heterogeneity of risks in detail.
With the development of spatial disaggregation methods, more gridded GDP data sets are
available recently. Based on the gridded GDP data, the distribution of high-resolution asset
value can be derived to support spatially explicit flood economic exposure and loss analysis
(Peduzzi et al., 2009; Winsemius et al., 2013; Wu et al., 2018).

The societal risk can be expressed by the potential fatality or injury to a group of
individuals induced by hazards such as flooding (Jonkman and Vrijling, 2008; Maaskant
et al., 2009; de Bruijn et al., 2014). Quantitative assessment of flood casualties has been
widely conducted in developed countries (FitzGerald et al., 2010; Di Mauro et al., 2012; Sharif
et al., 2015; Qiang, 2019), while it is rarely done in developing countries, typically due to the
lack of up-to-date and spatialized census data (Paul and Mahmood, 2016). Currently, open
and accessible gridded population data in developing countries make it possible to assess
flood casualties and their spatial patterns (Di Mauro et al., 2012; Luu et al., 2017).

Shanghai is considered to be the most vulnerable city to storm flooding among the nine
deltaic coastal cities worldwide (Balica et al., 2012). It also ranks as one of the top 20 cities in
the world in terms of population exposure and property exposure to floods (Hallegatte et al.,
2013). Compound flooding of extreme rainstorm, astronomical high tide, storm surge and
upstream flood is one of the catastrophic hazards in Shanghai (Wang et al., 2012). Previous
studies on food risks in Shanghai include flood hazard simulation and mapping (Wang et al.,
2012; Yin et al., 2013; Wang et al., 2019), damage to residential buildings and household
properties (Ke, 2014; Shan et al., 2019), direct and indirect losses of industrial networks
(Huang et al., 2017; Li et al., 2019) and flood adaptation measures in Shanghai (Du et al.,
2020). However, these studies only focus on a single flood scenario or a certain type of flood
exposure, which is insufficient for understanding the overall flood risks and their spatial
patterns in Shanghai.

Therefore, based on multiple storm flood scenarios in different return periods, as well as
fine-scale data sets including gridded GDP, gridded population and vector land-use, we use
a probabilistic risk model incorporating geographic information system (GIS) to quantify
the economic-societal risks of flooding in Shanghai and their spatial patterns. Our findings
can provide fundamental risk information for decision-making on flood resilience strategies.

2. Data and methods
2.1 Study area
Shanghai is located in the eastern edge of the Yangtze River Delta, with a total area of
6,340.5 km2 (Figure 1). In 2018, the density of residential population in Shanghai exceeds
3,823 persons/km2, and the total GDP approaches USD 0.51tn with a density of USD 80.5m/
km2. High densities of population and assets exposed to flooding are typical features of
disaster risks in Shanghai.

Shanghai lies in a flat and low-lying coastal region with an average altitude of 4.0m. It is
surrounded by water on three sides, with the estuary of the Yangtze River to the north, the
East China Sea to the east and the Hangzhou Bay to the south. The Huangpu River flows
through the metropolitan area. Shanghai is frequently threatened by storm surge, storm
flooding and torrential rainfall brought by typhoon. For instance, in 1905, storm flooding
caused nearly 30 thousand casualties in Shanghai (Yuan, 1999). In 1962, storm flooding
inundated half of the downtown area for nearly 10 days due to 46 failures along the
floodwalls of the Huangpu River and its branches and led to huge losses of 1/6 of the total
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GDP in Shanghai (Yin et al., 2012a; Ke, 2014). Storm surges during typhoon 9711 raised the
water level of the Huangpu River to 5.72m, the highest record till now, at the Huangpu Park
where the flood almost overtopped the floodwall. Shanghai suffers from typhoons around
1.5 times per year and the resulting annual flood frequency has increased significantly since
1949 (Du et al., 2015). In the future, with sea level rise and ground subsidence in Shanghai,
the return periods of storm flooding will be shortened remarkably (Wang et al., 2018; Yin
et al., 2020).

2.2 Data
The data sets used in this study include the storm flood scenarios simulated in four return
periods (i.e. 1/200, 1/500, 1/1,000 and 1/5,000-year), the 1-km gridded GDP data in 2015,
the100-m gridded population data in 2015, the vector land-use data in 2015, the annual GDP
data and the fixed asset investment data in Shanghai from 1978 to 2017.

The storm flood inundation scenarios are simulated and mapped by our group (Wang
et al., 2019). It is required by China’s State Council that some downtown sections of the
Huangpu River in Shanghai should meet the protection standard of a 1/1000-year flood(Ke,
2014; Micheal et al., 2019). Thus, based on the historical monitoring data, the extreme water
levels (EWLs) in the four return periods are calculated using the extreme value distribution
function(Ke, 2014; Ke et al., 2018). As boundary conditions, the EWLs in the four return
periods are input to an integrated numerical modeling system to simulate the inundation
processes of storm floods, respectively. The numerical modeling system is coupled with the
atmospheric model (Fujita typhoon model), ocean model (TELEMAC tide model with
TOMAWACwave model) and coastal model (MIKE 1D/2D hydrodynamic model). With the
numerical modeling system, the storm flood inundation scenarios in the four return periods
are simulated including inundation parameters such as extent and depth, and the
corresponding flood maps are created. The flood maps in this study exclude the Chongming

Figure 1.
Study area
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District (consisting of Chongming Island, Changxing Island and Hengsha Island) due to the
lack of boundary conditions of the water level in different return periods.

The gridded GDP data in 2015 are obtained from the China National Earth System
Science Data Center (http://www.geodata.cn), which are generated from the county-level
GDP statistics using a spatial disaggregation model.

The gridded population data in 2015 are derived from Harvard Dataverse, which are
produced by the Worldpop program (Gaughan et al., 2016) and available at http://www.
Worldpop.org.uk. The spatialized data are generated from the county-level census data
using random forest and density partitioningmapping techniques.

The vector land-use data in 2015 are manually interpreted from remote sensing images
and classified as categories of agriculture, residence, industry and warehouse,
transportation, public service and other (including under construction, special and unused
lands).

The annual nominal GDP data as well as the fixed asset investment data from 1978 to
2017 are acquired from the Shanghai Statistical Yearbook 2018.

2.3 Framework and methods
2.3.1 Research framework. Risk can be quantitatively expressed by the set of triplet (Si, Pi,
Ci) (Kaplan and Garrick, 1981), where, Si denotes the i

th scenario, Pi refers to the probability
of the ith scenario, and Ci means the losses of the ith scenario. This risk consists of hazard
scenarios, losses and probabilities, so it is the scenario-based probabilistic risk. As such,
flood risk can be understood as the probability of floods with given intensity and the
potential losses in a specific region and within a given time span. If flood scenarios are
ordered in terms of the severity of potential losses, a risk curve can be plotted to indicate the
relationship between potential losses and annual exceedance probability (AEP) scenarios. In
addition, with GIS applied, risk can be displayed as maps of potential losses in various AEP
scenarios (Li et al., 2016).

Following the scenario-based probabilistic risk model, the research framework is shown
in Figure 2. First, the asset value and its spatial distribution are estimated based on the
gridded GDP data. Then, the exposed assets and population are identified by overlaying the

Figure 2.
Methodology

framework of flood
risk analysis
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gridded asset data, the gridded population data, and the storm flood scenarios at different
return periods. Next, asset damages and population casualties under different flood
scenarios are estimated using vulnerability curves. Afterwards, the risk curve is plotted to
calculate the expected annual damages (EAD) of assets and the expected annual casualties
(EAC) of population. Finally, spatial patterns and hot spots of the flood risks in Shanghai are
identified using GIS.

2.3.2 Flood economic risk assessment

(1) Assessing the asset value and its spatial distribution:

Following the methods by Nicholls et al. (2008), asset value and its spatial distribution are
estimated with the gridded GDP data. The annual GDP data and fixed asset investment
data from 1978 to 2017 are firstly normalized to 2017 prices.

Given that the average useful life of fixed asset is around 40 years (Nicholls et al., 2008),
the net asset value (V) in 2015 is calculated as in equation (1):

V2015 ¼
X2015
i¼1978

vi (1)

where, vi represents the net asset value after depreciation in the ith year.
The coefficient (M) between the net asset value and GDP in 2015 is computed using

equation (2):

M ¼ V2015

GDP2015
(2)

With the computed coefficient M (�3), the gridded asset value in 2015 is derived from the
gridded GDP data.

(2) Assessing the asset damages and economic risk:

By overlaying the gridded flood map, gridded asset value map and vector land-use map,
grids with inundation depth, asset value and land-use attributes are obtained.

With the flood depth-damage curves for seven land-use categories in Shanghai (Yin et al.,
2012a), the asset damages are estimated as in equation (3):

AD ¼
X7
j¼1

Xn
i¼1

Eij � Fj
� �

(3)

where, Eij refers to the asset value of the ith grid within the jthland-use category, Fi
represents the damage ratio of the jth land-use category, and AD denotes the asset damages.

After calculating the asset damages in the four return periods, the damage-AEP curve is
plotted to indicate the relationship between the annual flood exceedance probability and the
asset damages and is further used to calculate the expected annual damage (EAD). The
EAD can be expressed as equation (4) (Ward et al., 2011):

EAD ¼
ð
xf xð Þd xð Þ (4)

where, x refers to the occurrence probability of a flood with a given intensity, i.e. AEP. f xð Þ
refers to the asset damages of the flood with x.
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(3) Identifying the hot spots of economic risk:

The spatial autocorrelation analysis (G*
i index) is performed to identify the hot and cold

spots of the EAD at the neighborhood scale (Getis and Ord, 1992).

G*
i ¼

Pn
j¼1

wij dð Þxj
Pn
j¼1

xj
(5)

where, wij is an n-by-n symmetrical matrix of 0 and 1 representing the spatial relationship
between neighborhood i and all other neighborhoods, and xi and xj refer to the risk values of
neighborhood i and j, respectively.

2.3.3 Flood societal risk assessment.

(1) Assessing the population exposure

The average number of building floors in Shanghai is around 6 (Shan et al., 2019). Assuming
that the population is evenly distributed among the six floors, the population on the ground
floor is computed in equation (6):

P ¼ pop
6

(6)

where, pop is the total population in each grid, and P is the estimated ground population in
each grid.

According to the flood maps created in the study, the areas with inundation depth greater
than 3m (exceeding the average height of the ground floor) cover less than 0.05% of the total
flooded areas under the four flood scenarios. Thus, only the population on the ground floor is
considered to be at flood risk. By overlaying the gridded ground population map and the
flood inundation map, the exposed population and its spatial distribution are calculated.

(2) Assessing the casualties and societal risk:

The population casualties are estimated using the depth-casualty function by Boyd et al.
(2005), which is fitted from the post-flood survey data.

F hð Þ ¼ 0:34

1þ exp 20:37� 6:18hð Þ� � (7)

where, h represents the inundation depth. F hð Þ is the casualty ratio.
After estimating the flood casualties in the four return periods, the casualty-AEP curve is

plotted to show the societal risk to flooding and thus used to calculate the EAC.

3. Results
3.1 Asset exposure
Figure 3 displays the spatial patterns of assets exposed to flooding. As the intensity of
flooding increases, the exposed assets expand from small dispersed areas to large
continuous areas. Under the 1/5,000-year flood scenario, the density of the exposed asset
value exceeds USD 500/m2 in the city center and USD 100/m2 in the east coast of Pudong
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District. In contrast, the density of the exposed asset value in the western and southern areas
is relatively low.

Table 1 summarizes the exposed assets based on land-use categories. Under the four
flood scenarios, residential land has the largest share of the exposed assets, followed by
public service land, transportation land, industrial and warehouse land.

3.2 Asset losses and economic risk
3.2.1 Asset losses. The asset losses under the four flood scenarios are estimated with
equation (3) (Figure 4). Under the 1/200-year flood scenario, the asset losses are
approximately USD 3.06bn, with densities typically below USD 20/m2. Under the 1/5,000-
year flood scenario, the asset losses are as high as USD 52bn, with densities over USD 20/m2

in the city center and over USD 10/m2 in the north coast of the Hangzhou Bay and the
upstream of the Huangpu River.

Figure 3.
Spatial distribution of
exposed assets under
the four flood
scenarios in Shanghai

Table 1.
Exposed assets (unit:
billion USD) and
their proportions
(unit: %) based on
land-use categories

Flood
return
periods

Exposed assets in different land-use categories

Residence
Public
service Transportation

Industry and
warehouse Agriculture Other Total

1/200 24.6(28.8%) 20.7(24.3%) 13.7(16.0%) 14.8(17.3%) 9.8(11.5%) 1.8(2.1%) 85.4(100%)
1/500 79.3(33.9%) 60.6(25.9%) 43.1(18.5%) 28.8(12.3%) 18.0(7.7%) 3.9(1.7%) 233.7(100%)
1/1,000 113.2(34.1%) 83.1(25.0%) 58.3(17.5%) 44.0(13.3%) 26.2(7.9%) 7.3(2.2%) 332.1(100%)
1/5,000 214.3(32.6%) 154.9(23.6%) 111.0(16.9%) 105.5(16.0%) 57.3(8.7%) 14.6(2.2%) 657.6(100%)

IJCCSM
13,4/5

536



Table 2 lists the asset losses in different land-use categories. Residential, public service and
agricultural lands rank the top three in asset losses, accounting for 28.3%, 19.2% and 30.8%
of the total losses under the 1/200-year flood scenario, and 41.1%, 22.0% and 20.3% of the
total losses under the 1/5,000-year flood scenario, respectively.

3.2.2 Economic risk curve. The economic risk curve is plotted based on the asset losses
under the four flood scenarios (Figure 5).

Using equation (4), the EAD of total assets are estimated to be USD 84.36m, among
which 41.8%, 23.1% and 19.1% are in residential, public service and agricultural lands,
respectively, (Table 3).

3.2.3 Hotspot analysis of economic risk. The hot and cold spots of the EAD in Shanghai
are obtained at the neighborhood scale using equation (5) (Figure 6). Several hot spots are
identified in the city center, in the depressions along the upper Huangpu River in the
southwest, along the north coast of Hangzhou Bay, and at the confluence of the Huangpu
River and Yangtze River in the northeast. The cold spots are mainly located around the
hotspots in the city center.

Figure 4.
Spatial distribution of

asset losses under
four flood scenarios

in Shanghai

Table 2.
Asset losses (unit:
billion USD) and
their percentages

(unit: %) in land-use
categories

Flood
return
periods

Asset losses in different land-use categories

Residence
Public
service Agriculture

Industrial and
warehouse Transportation Other Total

1/200 0.87 (28.3%) 0.59 (19.2%) 0.94 (30.8%) 0.46 (15.2%) 0.14 (4.5%) 0.06 (2.0%) 3.06 (100%)
1/500 6.18 (43.6%) 3.44 (24.2%) 2.41 (17.0%) 1.08 (7.6%) 0.93 (6.6%) 0.13 (1.0%) 14.17 (100%)
1/1,000 9.78 (43.5%) 5.39 (23.9%) 3.89 (17.3%) 1.76 (7.8%) 1.44 (6.4%) 0.25 (1.1%) 22.51 (100%)
1/5,000 21.38 (41.1%) 11.44 (22.0%) 10.53 (20.3%) 4.96 (9.5%) 3.07 (5.9%) 0.62 (1.2%) 52.00 (100%)
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3.3 Population casualties and societal risk
The exposed population (Table 4) and its spatial distribution (Figure 7) under the four flood
scenarios are calculated from equation (6). The exposed population also shows a significant
upward trend with rising flood intensity. Under the 1/200-year flood scenario, the exposed

Figure 5.
Flood damage-AEP
curve

0
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0.003

0.004

0.005

0 10 20 30 40 50

A
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Losses (billion USD)

Figure 6.
Hot and cold spots of
EAD in Shanghai

Table 3.
Expected annual
damages of different
land-use categories

Land-use
categories Residence Public service Agriculture

Industry and
warehouse Transportation Other Total

EAD (million USD) 35.29 19.50 16.10 7.43 5.11 0.93 84.36
Percentage (%) 41.8 23.1 19.1 8.8 6.1 1.1 100
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population is 280 thousand, making up 1.2% of the total population in Shanghai. Under the
1/5,000-year flood scenario, the exposed population amounts to 2.42 million, approximately
10% of the total population in Shanghai, with a high density of over 2 thousand persons/
km2 in the city center.

The potential casualties of the population are estimated with equation (7) (Table 4).
Under the 1/5,000-year flood scenario, the casualties are over 1,000, 3.5 times that under the
1/200-year flood scenario. Based on the casualties under the four flood scenarios (Table 4),
the EAC are calculated to be 2.28 (Figure 8).

4. Discussions
4.1 Uncertainties
Several studies have been carried out to assess flood risks in Shanghai or other similar cities.
For instance, Shan et al. (2019) examined the flood damage to residential buildings and
household properties in Shanghai under the same flood scenarios. Our results of asset losses
present similar pattern to those of Shan et al. (2019), but the losses in our study are
significantly higher in the north coast of Hangzhou Bay mainly due to the use of more
comprehensive asset values derived from the gridded GDP data. Under the same flood
scenarios and with the land values of different land-use categories, Du et al. (2020) calculated
the expected annual flood damages in Shanghai to be USD 106m (at 2015 prices), which is

Table 4.
Population exposure
and casualties under
four flood scenarios

Flood return periods Exposed population Casualties

1/200 280,000 299
1/500 730,000 378
1/1,000 1,110,000 495
1/5,000 2,420,000 1,045

Figure 7.
Spatial distribution of
exposed population

under four flood
scenarios in Shanghai
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comparable to our results of USD 84.36m. Aerts et al. (2013) estimated the annual damages
of low probability flooding in New York to be USD 59m–129m, which is also consistent with
our results. The storm flooding during Hurricane Sandy in 2012, with a return period of
1/350- year (Lin et al., 2016), affected 8.4 million people and caused 43 casualties in New
York. The Chao Phraya River flooding in 2011, with a return period of 1/50-year (Promchote
et al., 2016), impacted 1.5 million people and induced 600 casualties in Thailand. Compared
to the above studies and facts, the estimates on the asset losses and population casualties in
this study are reasonable.

However, there are some uncertainties in our results, largely from the flood hazardmodeling
and the exposure and vulnerability analysis. First, various parameters are input into the
integrated flood hazard simulation system (Wang et al., 2019), such as the land elevation, storm
track and intensity, EWLs and local bathymetry. Different parameter settings can lead to
variation and uncertainty in the simulation results. In particular, significant uncertainty may
arise from the estimates of low-probability EWLs based on short-term observational data and
extreme value distribution functions. Second, the gridded GDP and population data used for
exposure analysis are developed from census data with spatial disaggregation methods. The
census data are only available by census units, with uncertainties on how the data distribute
spatially within each unit, thus causing uncertainties in the derived gridded GDP and
population data. Third, a major source of uncertainty is the damage curve that describes the
relationship between hazard parameters and the resulting relative/absolute damage for a
certain type of element. Damage curve is highly variable according to the locations and time.
As there are no government standards or recommendations on the flood damage assessment in
Shanghai, the depth-damage curves for seven land-use categories of Yin et al. (2012a) and the
depth-casualty function of Boyd et al. (2005) are used in this study. These curves should be
further calibrated with more local damage data. In addition to inundation depth, other damage-
influencing factors such as inundation duration and velocity should be considered in the future.

4.2 Research implications
Quantifying and mapping the spatial patterns of disaster risks is one of the key tasks for
risk assessment. In this study, we develop a methodology framework to assess the overall
economic-societal risks of storm flooding in Shanghai using a probabilistic risk model
incorporating GIS technology. Compared to previous studies that use aggregated data at
administrative units, we derive spatially refined flood risk maps with open gridded GDP
and population data. Moreover, based on the time series of gridded GDP and land-use data
and the Shared Socioeconomic Pathways (SSPs), future spatial patterns of GDP and asset

Figure 8.
Flood casualty –AEP
curve
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values can be projected. This will help to assess the non-climatic driving forces on future
flood risks (Merkens et al., 2016; Jiang et al., 2018).

In this study, several hotspots with high flood risks are identified, where different
resilience measures should be prioritized according to local conditions. For instance, in the
city center with dense population and assets, both structural and natural-based measures
are necessary, such as reinforcing floodwalls of the Huangpu River, upgrading urban
drainage capacity with pumping stations and expanding the urban permeable surface. In
the depressions along the upper Huangpu River with dense river networks, natural-based
solutions are more appropriate. These measures include optimizing land-use patterns,
restoring natural river networks and their roles in flood storage and regulation and
reserving flow paths for excessive water in case of flooding. Along the coasts, structural
measures remain the preferred options, two of which are constructing tidal barrier near the
confluence of the Huangpu River and Yangtze River and upgrading seawalls. In addition,
development in ecologically sensitive areas such as wetlands, mangroves and forests should
be strictly regulated. Protecting ecologically sensitive areas is critical not only to
environmental impact mitigation and conservation, but also to flood resilience enhancement.
For instance, mangroves improve flood resilience through attenuating tidal waves and
storm surges (Barbier, 2015).

5. Conclusions
Under climate change and sea level rise, the frequency and intensity of storm flooding is
expected to increase. Driven by rapid urbanization, population and assets will continue to
grow in coastal cities and face rising risks from storm flooding. Based on four storm flood
scenarios with different return periods, as well as the gridded GDP data, gridded population
data and vector land-use data, this paper explores the overall flood economic-societal risks
and their spatial patterns in Shanghai. Themain conclusions are as follows.

(1) From 1/200 to 1/5,000-year flood scenarios, the exposed assets increase from USD
85.4bn to USD 657.6bn, and the asset losses increase from USD 3.06bn to USD
52bn. The EAD of assets is around USD 84.37m, with residential, public service
and agricultural lands accounting for 41.8%, 23.1% and 19.1%, respectively. The
hotpots of the EAD are distributed in the city center, in the depressions along the
upper Huangpu River in the southwest, along the north coast of Hangzhou Bay,
and at the confluence of the Huangpu River and Yangtze River in the northeast.

(2) From 1/200 to 1/5,000-year flood scenarios, the exposed population rises from 280
thousand to 2.42 million, and the estimated casualties rise from 299 to 1,045. The EAC
is around 2.28. The hotspots of the EAC are generally consistent with those of EAD.

(3) Our study provides quantitative and spatially explicit flood risk patterns in
Shanghai, which has significant implications for cost-benefit analysis of climate
change adaptation and flood resilience.
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