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Abstract
Purpose – The ecological environment of the Loess Plateau, China, is extremely fragile under the context of
global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes.
This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for
the restoration and environmental treatment of vegetation on the Loess Plateau.
Design/methodology/approach – The Savitsky–Golay (S-G) filtering algorithm was used to
reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with
trend analysis and partial correlation analysis, the influence of climate change on the phenology and
enhanced vegetation index (EVI) during the growing seasonwas described.
Findings – The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of
start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the
date of the end of the growing season showed the opposite pattern and the length of the growing season
gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation
changed significantly and showed clear differentiation according to different topographic factors. Vegetation
correlated positively with precipitation fromApril to July andwith temperature fromAugust to November.
Originality/value – This study provides technical support for ecological environmental assessment,
restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past
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two decades. It also provides theoretical support for the prediction model of vegetation phenology changes
based on remote sensing data.

Keywords MODIS-EVI, S-G filter, Growing season, Change trend, Climatic factors, Loess Plateau
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1. Introduction
The Fifth Assessment Report of the Intergovernmental Panel On Climate Change (IPCC)
reported that almost all parts of the world are experiencing climate warming; moreover,
since 1950, precipitation in Asia has decreased significantly (IPCC, 2014). Vegetation and
phenology are important indicators of regional climatic characteristics, and climatic
conditions restrict the geographical distribution of vegetation (Wang et al., 2016a). Studies of
vegetation coverage, phenology and their response to global climate change are of great
significance toward an understanding of the impacts of climate change on vegetation,
terrestrial ecosystems and human life (Richardson et al., 2013). Literature review shows that
achievements have been made toward understanding changes of vegetation phenology and
the effects of climate change (Thompson and Koenig, 2018; Silveira et al., 2019). In theory
and at the method research level, Zhao et al. (2014) compared the performance of
geographical weighted regression (GWR) and ordinary least squares (OLS) methods for
exploring the spatial variation relationships between the normalized difference vegetation
index (NDVI) and climate factors. Zhao et al. (2014) found that GWR represented significant
improvements of model performance over OLS. Sousa et al. (2019) presented a method that
uses empirical orthogonal function analysis of a single spectral index to capture
phenological parameters from satellite imagery and to characterize the spatiotemporal
dynamics of vegetation phenology. At the level of empirical research, Baniya et al. (2019)
used the Sen’s slope and Mann Kendall test statistics to investigate changes in vegetation at
the national and provincial scales in Nepal from 2000 to 2017 and found a significant
increase of the NDVI. Moreira et al. (2019) evaluated the dynamic of phenological metrics
based on enhanced vegetation index (EVI) for the period from 2001 to 2014 through the
TIMESAT program and reported that the phenological pattern of Brazil was controlled by
variations of air temperature. Deka et al. (2019) adopted the threshold method to extract
phenological parameters of vegetation and showed that the correlation of temperature and
vegetation NDVI was stronger than that of precipitation in India. Adole et al. (2019)
conducted a systematic analysis of the relationship between phenological and driver factors
using satellite data and identified the photoperiod as the dominant factor of vegetation
phenology. These studies effectively show that the phenological period of vegetation
changed significantly at a globally scale (Deka et al., 2019; Merrick et al., 2019).

As the most important ecological safety zone and a core agricultural and animal
husbandry area in China, the environment of the Loess Plateau is extremely fragile because
of the adverse effects of the harshness of natural conditions and human activities. Research
on the vegetation dynamics and phenological periods as well as their correlation with
climate change in the Loess Plateau can provide theoretical references for the selection of
optimal species and can provide technical support for the formulation and implementation
of ecologically sustainable development measures. A number of authors have recognized the
importance of vegetation and phenological changes of the Loess Plateau. Zhang and Ren
(2015) used a dynamic threshold to identify phenological parameters in Shaanxi Province
(which is part of the Loess Plateau) and concluded that the vegetation phenology varies
significantly with latitude. Liu et al. (2013) found that the vegetation NDVI of the study area
increased and the response of the vegetation to precipitation and potential
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evapotranspiration showed a time lag in the Three-River Headwater Region when
employing linear regression, Hurst index and partial correlation analysis. Zhang et al. (2013)
conducted the time-lag partial correlation analysis to study the response of vegetation
coverage to air temperature and precipitation conditions on the Loess Plateau and found
that air temperature exerted a stronger influence than precipitation. Xia et al. (2018)
analyzed the correlation of the asymmetric day and night increase of temperature and
vegetation growth over the past 30 years and found that the partial correlation coefficient
between the maximum temperature and NDVI was positive in wet and cold regions and
negative in semi-arid and arid regions.

The literature shows that various studies focused on the extraction of phenological
periods, the identification of the characteristics of temporal and spatial changes of
vegetation and phenological periods (Xia et al., 2015; He et al., 2018) and the underlying
causes of these changes (Zhou et al., 2016; Zhang et al., 2018). These studies are based on the
analysis of temporal and spatial characteristics of vegetation and phenological period.
Several achievements have been made. However, many controversies still exist about the
relationship between vegetation and climate change and therefore, the research methods and
influence factor analysis need to be further developed. Furthermore, because of factors such
as the number of observed sample points, the coverage area and relevant species, traditional
phenological observation is rarely applied to biological communities or at larger scales (Xu
et al., 2014). In recent years, aerospace and unmanned aerial vehicle remote sensing
technology has rapidly developed (Li et al., 2019), thus providing regional and even global
remote sensing image data. With longer time series, broad coverage, high spatial resolution
and easier access, this remote sensing data has been increasingly used in the study of
vegetation and phenological evolution (Song et al., 2015; Xin et al., 2015). Consequently, this
study used long time series satellite data to investigate the vegetation dynamics of the Loess
Plateau.

This study used an S-G filtering algorithm, integrated into the time series satellite data
analysis tool (TIMESAT), to reconstruct MODIS-EVI over the Loess Plateau, which
effectively removed pixels containing outliers and noise. Based on the reconstructed EVI
time series, phenological information for the vegetation of the Loess Plateau was extracted
and the spatial distribution of EVI and the changing trend of phenology during the growing
season were analyzed. Finally, partial correlation analysis was used to assess the multi-
dimensional response of vegetation to climate change to provide a basis for the
environmental evaluation and climate change prediction of the Loess Plateau.

2. Data and methods
2.1 Study area
The Loess Plateau region (i.e. the transition zone from a humid and semi-humid climate to
an arid and semi-arid climate) is located at 100°520E-114°330E, 33°410N-41°160N (Figure 1).
It includes the provinces Qinghai, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi and
Henan and has a total area of about 624,000 km2. Previous research showed that this region
is particularly sensitive to global climate change. Since the 1960s, the average annual
temperature on the Loess Plateau has increased by 1.91°C and the average annual rainfall
has decreased by 29.11mm (Wang et al., 2012). The Loess Plateau is subject to a most severe
soil and water loss and the environment is extremely sensitive to climate change (Yang et al.,
2018). Since the end of the 20th century, China has implemented a series of ecological
restoration projects, such as water and soil conservation and the Three-North Shelterbelt
project; consequently, the regional environment has been restored satisfactorily (Li et al.,
2012). Vegetation types of the Loess Plateau from southeast to northwest show degradation
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from forest belt, forest grassland, typical grassland, desert grassland, to desert. The
vegetation shows clear horizontal and vertical zonality because of factors such as
temperature, precipitation and altitude.

2.2 Climate and terrain data set
The meteorological data for the Loess Plateau was obtained from the National
Meteorological Information Center (http://data.cma.cn/). Digital elevation model (DEM) data
was derived from the Geospatial Data Cloud (www.gscloud.cn) at a spatial resolution of
30m. The DEM data as a covariable was adopted to the thin plate spline function to
interpolate the monthly average temperature and precipitation data.

2.3 Enhanced vegetation index data set
Themoderate resolution imaging spectroradiometer (MODIS) 13A2 EVI data sets from 2000
to 2018 were download from the National Aeronautics and Space Administration (https://
search.earthdata.nasa.gov/). To study the vegetation change during the growing season and
its correlation with climate factors, the EVI data set with a time resolution of 16 days was
converted to a monthly scale by the maximum synthesis method. The average value of EVI
in each month of the growing season was calculated as a representation of the state of
vegetation coverage.

2.4 Time series data reconstruction and phenological data extraction
MODIS-EVI images were extracted, projected and transformed, mosaicked and clipped
using a Python script. Because remote sensing image data is affected by aerosols, field
of view, clouds and solar altitude angles (along with other conditions, such as outliers
and noise), appropriate reconstruction of the time series data is a prerequisite for
relevant research using MODIS-EVI. A time series data reconstruction method using

Figure 1.
Geographical location
of the Loess Plateau
and distributionmap
of meteorological
stations
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Fourier transform, known as the Savitsky–Golay (S-G) filter have been used by many
authors (Madden, 1978; Jonsson and Eklundh, 2004). The advantage of this approach is
that the degree of adaptation to the upper envelope can be tuned to the desired level,
which differs from the maximum value composite method which always adapts the
highest values (Stisen et al., 2007). In addition, the vegetation index data set was
reconstructed by the filtering algorithm, which retained the continuity of vegetation
growth and its change, removed the influence of outliers and did not change the value of
continuous change. Relevant studies have confirmed that this method produces a
relatively ideal fit for the reconstruction of time series data (Borges et al., 2014; Wang
et al., 2015; Duarte et al., 2018). This study used the S-G filtering algorithm to
reconstruct the EVI time series data to eliminate specific pixel values including
mutation and noise. Because of the absence of MODIS-EVI time series data during the
study period, images from the first three months of 2001 were supplemented to
corresponding periods in 2000, based on relevant literature (Huang, 2009). The time
series data before and after S-G fitting showed that the noise was significantly reduced
(Figure 2).

2.5 Research methods
2.5.1 Savitsky–Golay filtering. S-G filtering is a moving window weighted average
algorithm. Weighted coefficients are obtained using a least squares method fit for a given
higher-order polynomial over a sliding window. The calculation formula for S-G filtering is
shown in equation (1):

Y *
j ¼

Xi¼m

i¼�m

CiYjþi

N
(1)

where Y*
j represents the reconstructed EVI value, yjþi represents the original EVI value, Ci

represents the coefficient obtained by S-G filtering, and N represents the number of
convoluting integers, which is equal to the smoothing window size.

2.5.2 Trend analysis. Linear regression was used to calculate the temporal variability
within vegetation parameters using raster data from the Loess Plateau based on an IDL
script, and the F test was used for significance testing. The formula for calculating the slope
is shown in equation (2):

Figure 2.
MOD-EVI time series

filtered using the
Savitsky–Golay

algorithm
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Slope ¼
n�Pn

i¼1
i � Pi �

Pn
i¼1

i
Pn
i¼1

pi

n�Pn
i¼1

i2 � Pn
i¼1

i

 !2 (2)

where Slope represents the change trend, Pi represents the phenology value for the ith year,
and n represents the length of the time series. If the slope> 0, phenology is increasing; if the
slope< 0, phenology is delayed; and if the slope = 0, phenology remains unchanged.

2.5.3 Partial correlation analysis. Partial correlation analysis can eliminate the
interference of other variables and enable the study of the relationship between two
target variables. In this study, the relationship between temperature and EVI over the
vegetation growth season was analyzed by limiting precipitation variables. Then, the
relationship between precipitation and vegetation EVI during growing season was
analyzed by limiting temperature variables. First-order partial correlation coefficients
were calculated based on the correlation coefficient formula (Cleophas and Zwinderman,
2018), as shown in equation (3):

rxy�z ¼ rxy � rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xz

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2yz

q (3)

where, rxy z represents the partial correlation coefficient between x and y of the control
variable z; rxz represents the correlation coefficient between x and z; ryz represents the
correlation coefficient between y and z; and rxy represents the correlation coefficient between
x and y.

3. Results
3.1 Phenological spatial pattern and changes
3.1.1 Spatial pattern of phenological periodicity. Figure 3 shows the phenological
parameter and the spatial distributions of start of growing season (SOS), end of

Figure 3.
Spatial patterns of
phenological
periodicity
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growing season (EOS) and length of growing season (LOS). SOS was gradually later
along the Southeast–Northwest direction, while EOS showed the opposite pattern.
The vegetation started to grow earlier in the valley plain areas, which have relatively
warm and humid climatic conditions. Vegetation started to grow latter in the
northeast and northwest where climatic conditions are relatively dry and cold. The
spatial variability of vegetation EOS was gradually postponed from north to south.
LOS gradually shortened from southeast to northwest, while the southeast as a whole
had longer LOS than the northwest. LOS in the southeast of the gully area of Loess
Plateau and the valley plains area was longest.

3.1.2 Interannual variability of the phenological phase. The phenology variability of
the Loess Plateau was fitted using linear regression to obtain trends for SOS, EOS and
LOS (Figure 4). SOS, EOS and LOS showed significant changes in the southeast and
northwest regions of the study area, while changes in the central region were
relatively small showing a high - low - high trend along the Southeast–Northwest
direction. LOS decreased in the valley plain areas and arid areas in the northwest, but
gradually increased in the Fenhe River Basin and the western mountainous areas with
higher elevations.

3.2 Multi-dimensional changes of enhanced vegetation index during the growing season
3.2.1 Spatiotemporal changes of vegetation enhanced vegetation index. The spatial
distributions of EVI values during SOS, EOS and LOS were obtained using raster
statistics (Figure 5). EVI values were higher in the southeast and lower in the
northwest, showing a gradual decrease from southeast to northwest. The highest
value of LOS EVI were mainly distributed in the southeast of the gully area of the
Loess Plateau, the valley plains areas and the rocky mountainous areas in the south
and east of the study area, especially in the southeast of the gully area of the Loess
Plateau. In addition, the irrigated area also showed a small distribution. Regions
where SOS EVI < 0.2 accounted for 59.13% of the total area, regions with 0.2#EVI <
0.3 accounted for 22.27% and regions with EVI� 0.3 accounted for 18.60%. Regions
with EOS EVI < 0.2 accounted for 78.95%, regions with 0.2#EVI < 0.3 accounted for
20.36% and regions with EVI� 0.3 accounted for 0.69%. In addition, 29.67% of

Figure 4.
Phenological change
trend for the start of
the growing season,

length of the growing
season, and end of the

growing season
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regions had LOS EVI < 0.2, 31.74% of regions had 0.2#EVI < 0.3 and 38.59% of
regions had EVI� 0.3.

3.2.2 Vegetation enhanced vegetation index changes with different topographic factors.
Along with a change in altitude, hydrothermal conditions also change and affect
vegetation EVI. Analyzing EVI trends at different altitudes provides a deeper
understanding of the changes in vegetation in the vertical direction. According to the
percentage distribution of EVI at different elevations (Figure 6a), vegetation EVI values
of SOS, EOS and LOS showed a high-low-high “valley type” distribution with
increasing altitude. The SOS EVI percentage at minimum and maximum elevations
was highest (15%). With increasing elevation, the percentage of EOS EVI changed from
16% to 14%, then decreased rapidly (11%), increased slightly and gradually leveled off
(12%), thus showing strong zonality in the vertical direction.

The EVI percentage distributions at different slopes are shown in Figure 6 b: SOS EVI
steadily increased from 7% to 15% with increasing slope. EOS EVI increased slowly with
the increasing slope. LOS EVI increased rapidly and gradually stabilized. In summary, the
percentages of SOS, EOS and LOS EVI gradually increased with increasing slope, but the
rate of increase was different at different levels.

3.3 Response of vegetation to climate change
3.3.1 Temporal variability of the partial correlation between enhanced vegetation index and
climatic factors. To explore the relationship between EVI, temperature and precipitation,
partial correlations were calculated, alternatively using precipitation and temperature
as control variables (Table 1). The partial correlation coefficients differed significantly.
On a monthly scale, temperature exerted a stronger influence on EVI than precipitation.
The maximum positive correlation between EVI and precipitation occurred in April
(R = 0.90) and the minimum occurred in December (R = 0.79). The minimum negative
correlation occurred in January and April (R = �0.80) and the maximum occurred in
October (R = �0.90). Average values from April to July were positive. The maximum
positive correlation between EVI and temperature occurred in February (R = 0.97) and
the minimum occurred in December (R = 0.80). The minimum negative correlation
occurred in December (R = �0.81) and the maximum occurred in February (R = �0.96).

Figure 5.
Spatial distribution of
monthly average EVI
values for vegetation
phenology
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The average partial correlation coefficient between August and November was
positive, while it was negative in the remaining months.

3.3.2 Spatial variability of partial correlations between enhanced vegetation index
and climatic factors. To visualize the spatial variability of these results, partial correlation
coefficients were first calculated for EVI and precipitation while controlling for temperature.

Figure 6.
EVI percentages of
SOS, EOS, and LOS

at different elevations
(a) and slope
gradients (b)

Table 1.
Partial correlations

between EVI,
monthly

precipitation and
temperature

R-value Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

EVI-PRE
(CV: TEM)
Min �0.80 �0.85 �0.84 �0.8 �0.86 �0.81 �0.83 �0.86 �0.87 �0.90 �0.84 �0.86
Max 0.81 0.89 0.84 0.9 0.87 0.85 0.88 0.82 0.85 0.84 0.84 0.79
Mean �0.07 �0.02 �0.17 0.07 0.02 0.04 0.04 �0.09 �0.10 �0.16 0.00 �0.08

EVI-TEM
(CV: PRE)
Min �0.92 �0.96 �0.91 �0.94 �0.95 �0.90 �0.91 �0.83 �0.92 �0.88 �0.88 �0.81
Max 0.87 0.97 0.91 0.90 0.92 0.92 0.85 0.88 0.92 0.93 0.90 0.80
Mean �0.39 �0.48 �0.37 �0.40 �0.39 �0.35 �0.14 0.15 0.24 0.33 0.29 �0.05
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Next, coefficients between EVI and temperature were calculated while controlling for
precipitation (Figure 7).

After removing the influence of temperature, partial correlation coefficients between
precipitation and EVI ranged between �0.849 and 0.907. After removing the influence
of precipitation, partial correlation coefficients between temperature and EVI ranged
between �0.911 and 0.852. Positive correlations between EVI and precipitation and
negative correlations between EVI and temperature were mainly concentrated in the
northwest of the gully area of the Loess Plateau and south of the hilly and gully area.
Regions with significant negative correlations between EVI and precipitation and
significant positive correlations between EVI and temperature were mainly
concentrated in the southeastern gully area, southwest of the valley plains area and
southeast of the rocky mountainous area.

4. Discussion
Empirical studies in China showed that vegetation activity was mainly regulated by
temperature, which is especially pronounced in the mountainous regions of northern China.
The vegetation EVI changes and responses to temperature and precipitation showed clear
spatial differences and regularity. Temperature exerted a stronger influence on EVI than
precipitation, which is consistent with the findings of relevant studies (Zhang et al., 2019; Qu
et al., 2020). Ouyang et al. (2020) also reported that temperature exerted a stronger effect on
vegetation of grassland and forest than precipitation in other basins by analyzing the
correlation of vegetation with climatic factors.

With continuous global warming, empirical studies showed that the trend of the
advancement of the phenological period is widespread. A similar phenomenon has
been observed in this study, where the vegetation phenological clearly advanced over
the past decade. This is relatively consistent with the results reported by other
relevant literature (Hou et al., 2013), indicating that the extracted parameters based on
reconstructed MODIS-EVI were reliable. Wang et al. (2019) used the relative threshold
method to obtain the phenological parameters and also found a similar change, where
the SOS and EOS showed earlier and later trends, respectively, which led to a longer
LOS in the Yellow River Basin. The phenomenon of an elongated vegetation growth

Figure 7.
Partial correlation
coefficients between
EVI, precipitation
and temperature
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season under the background of global warming has also been confirmed for other
areas (Deng et al., 2017). Furthermore, previous research showed that 54.84% of the
area of the LOS was advanced, while 67.64% showed a delay in EOS and 66.28% had
a lengthened LOS in the Loess Plateau (Wang et al., 2016b).

This study adopted the S-G filtering algorithm, integrated in TIMESAT to
reconstruct the time series MODIS EVI data and to remove noise, mutation points and
noise from the original data set to ensure reliability of EVI data. In addition, the
temperature and precipitation values were based on the interpolation of
meteorological station data with the thin plate spline method. Although DEM were
used for the interpolation, because of the scarcity of meteorological stations in
mountainous areas, interpolation accuracy still remains uncertain. Therefore,
selecting suitable satellite data based on the principle of availability and reliability is
a feasible path worth exploring.

5. Conclusion
The phenological period of the Loess Plateau showed clear spatiotemporal
heterogeneity. In terms of spatial variability, the SOS date of vegetation showed a
gradually delaying trend from south to north. LOS gradually shorter from southeast
to northwest. In terms of temporal variability, clear trends of an SOS advance and an
EOS delay were found. Vegetation EVI change showed significant vertical zonality
and gradually decreased from the southeast to the northwest under the influence of
hydrothermal conditions. Partial correlation coefficients between vegetation EVI,
temperature and precipitation indicated that temperature exerted a stronger impact
on EVI than precipitation. Negative correlations between EVI and precipitation and
positive correlations between EVI and temperature were mainly concentrated in the
southwest of the valley plain area, southeast of the gully area and in the rocky
mountainous area. Positive correlations between EVI and precipitation and negative
correlations between EVI and temperature were mainly concentrated south of the
hilly and gully area and northwest of the gully area of the Loess Plateau.

This study analyzed the spatial characteristics of phenological changes, based on
the phenological changes of vegetation in the Loess Plateau over the past 20 years,
which were retrieved based on long-time series remote sensing data sets. Scientific
guidance for the plantation of plant species on the Loess Plateau can effectively
increase the scientificity of ecological restoration projects. In addition, this study
proved that the S-G filtering algorithm can effectively remove anomalies and noise from
remote sensing image data. This effectively improves the accuracy of remote sensing
data and yields better performance for the application of vegetation phenological
change monitoring. This conclusion can provide a scientific and reasonable method for
the preprocessing of remote sensing data for similar research.

Informed by this research, the authors suggest that the future directions of the driving
forces of vegetation and phenological phase changes should focus on the following aspects:
Firstly, the response of EVI to climate change should be studied on a longer time scale by
combining this data with Global Inventory Modeling and Mapping Studies NDVI3g or
similar data sets. Besides, the advantages of satellite data need to be used to simulate
climate change in a more detailed way by downscaling satellite remote sensing data (Chen
et al., 2014; Chen et al.,2019). Secondly, the Chinese government has initiated a series of
environmental protection measures that have directly caused land cover changes in the
Loess Plateau since 1999 (Zhao et al., 2017). The quantification and elimination of its
influence on EVI change is an important issue for future studies. Finally, along with changes
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in the global climate system and strong human interference, whether the warming trend will
long-term development in Loess Plateau and surface process will be how to respond?
Thirdly, while the temporal and spatial characteristics of EVI and its relationships with
temperature and precipitation during the growing season have been studied in detail, EVI is
not only affected by temperature and precipitation, but also by factors such as surface
temperature, precipitation, evapotranspiration, wind speed, solar radiation and human
activities. Therefore, the influence of the above factors to the vegetation patterns and
dynamics of ecologically fragile areas require more comprehensive and continuous
observation.
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