TY - JOUR AB - Purpose This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method.Design/methodology/approach The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is included with an internal active hollow with constant thermal boundary conditions at its walls and variable dimensions. It should be noted that the dimensions of the internal hollow will be determined by as aspect ratio.Findings The Rayleigh number, nanoparticle concentration and the aspect ratio are the governing parameters. The heat transfer performance of the cavity has direct relationship with the Rayleigh number and solid volume fraction of CuO-water nanofluid. Moreover, the configuration of the cavity is good controlling factor for changing the heat transfer performance and entropy generation.Originality/value The originality of this work is using double-MRT lattice Boltzmann method in simulating the free convection fluid flow and heat transfer. VL - 29 IS - 9 SN - 0961-5539 DO - 10.1108/HFF-12-2018-0809 UR - https://doi.org/10.1108/HFF-12-2018-0809 AU - Pu Qiang AU - Aalizadeh Farhad AU - Aghamolaei Darya AU - Masoumnezhad Mojtaba AU - Rahimi Alireza AU - Kasaeipoor Abbas PY - 2019 Y1 - 2019/01/01 TI - Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity T2 - International Journal of Numerical Methods for Heat & Fluid Flow PB - Emerald Publishing Limited SP - 3075 EP - 3094 Y2 - 2024/04/19 ER -