TY - JOUR AB - Purpose Investigation for convective flow of water-based nanofluid (composed of ferric oxide asnanoparticles) by curved stretching sheet of variable thickness is made. Bejan number andentropy generation analysis is presented in presence of viscous dissipation, mixed convectionand porous medium.Design/methodology/approach In this paper, by using NDSolve of MATHEMATICA, the nonlinear system of equations is solved. Velocity, temperature, Bejan number and entropy generation for involved dimensionless variables are discussed.Findings Increase in velocity is depicted for larger curvature parameter, and opposite trend is witnessed for higher nanoparticle volume concentration. Enhancement in temperature is seen for higher Eckert number while reverse behavior is noticed for larger curvature parameter. Entropy rate increases for variation of curvature parameter, Brinkman number and nanoparticle volume fraction. Bejan number decays for mixed convection and curvature parameters.Originality/value To the authors’ knowledge, there exists no study yet which describes flow by curved sheet of variable thickness. Such consideration with nanoparticles seems important task. Thus, the main objective here is to determine entropy generation in ferromagnetic nanofluid flow due to variable thickened curved stretching surface. Additionally, effects of Joule heating, porous medium, mixed convection and viscous dissipation are taken into account. VL - 29 IS - 9 SN - 0961-5539 DO - 10.1108/HFF-12-2018-0782 UR - https://doi.org/10.1108/HFF-12-2018-0782 AU - Qayyum Sumaira AU - Hayat Tasawar AU - Alsaedi Ahmed PY - 2019 Y1 - 2019/01/01 TI - Optimization of entropy generation in motion of magnetite-Fe3O4 nanoparticles due to curved stretching sheet of variable thickness T2 - International Journal of Numerical Methods for Heat & Fluid Flow PB - Emerald Publishing Limited SP - 3347 EP - 3365 Y2 - 2024/04/25 ER -