To read this content please select one of the options below:

A novel blast-mitigation concept for light tactical vehicles

Mica Grujicic (Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA)
Brian d’Entremont (Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA)
Jennifer Snipes (Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA)
S. Ramaswami (Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 3 April 2017

140

Abstract

Purpose

A new concept solution for improving blast survivability of the light tactical military vehicles is proposed and critically assessed using computational engineering methods and tools.

Design/methodology/approach

The solution is inspired by the principle of operation of the rocket-engine nozzles, in general and the so called “pulse detonation” rocket engines, in particular, and is an extension of the recently introduced so-called “blast chimney” concept (essentially a vertical channel connecting the bottom and the roof and passing through the cabin of a light tactical vehicle). Relative to the blast-chimney concept, the new solution offers benefits since it does not compromise the cabin space or the ability of the vehicle occupants to scout the environment and, is not expected to, degrade the vehicle’s structural durability/reliability. The proposed concept utilizes side vent channels attached to the V-shaped vehicle underbody whose geometry is optimized with respect to the attainment of the maximum downward thrust on the vehicle. In the course of the channel design optimization, analytical and computational analyses of supersonic flow (analogous to the one often used in the case of the pulse detonation engine) are employed.

Findings

The preliminary results obtained reveal the beneficial effects of the side channels in reducing the blast momentum, although the extent of these effects is quite small (2-4 per cent).

Originality/value

To the authors’ knowledge, the present work is the first exploration of the side-vent-channels concept for mitigating the effect of buried-mine explosion on a light tactical vehicle.

Keywords

Citation

Grujicic, M., d’Entremont, B., Snipes, J. and Ramaswami, S. (2017), "A novel blast-mitigation concept for light tactical vehicles", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 4, pp. 889-923. https://doi.org/10.1108/HFF-12-2015-0502

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles