To read this content please select one of the options below:

Free convective heat transfer efficiency in Al2O3–Cu/water hybrid nanofluid inside a rectotrapezoidal enclosure

Mohammad M. Rahman (Department of Mathematics, College of Science, Sultan Qaboos University, Muscat, Oman)
Ziad Saghir (Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada)
Ioan Pop (Department of Mathematics, Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj Napoca, Romania)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 7 May 2021

Issue publication date: 3 January 2022

218

Abstract

Purpose

This paper aims to investigate numerically the free convective heat transfer efficiency inside a rectotrapezoidal enclosure filled with Al2O3–Cu/water hybrid fluid. The bottom wall of the cavity is uniformly heated, the upper horizontal wall is insulated, and the remaining walls are considered cold. A new thermophysical relation determining the thermal conductivity of the hybrid nanofluid has been established, which produced results those match with experimental ones.

Design/methodology/approach

The governing partial differential equations are solved using the finite element method of Galerkin type. The simulated results in terms of streamlines, heat lines and isotherms are displayed for various values of the model parameters, which govern the flow.

Findings

The Nusselt number, friction factor and the thermal efficiency index are also determined for the pertinent parameters varying different ratios of the hybrid nanoparticles. The simulated results showed that thermal buoyancy significantly controls the heat transfer, friction factor and thermal efficiency index. The highest thermal efficiency is obtained for the lowest Rayleigh number.

Practical implications

This theoretical study is significantly relevant to the applications of the hybrid nanofluids electronic devices cooled by fans, manufacturing process, renewable energies, nuclear reactors, electronic cooling, lubrication, refrigeration, combustion, medicine, thermal storage, etc.

Originality/value

The results showed that nanoparticle loading intensified the rate of heat transfer and thermal efficiency index at the expense of the higher friction factor or higher pumping power. The results further show that the heat transmission in Al2O3–Cu/water hybrid nanofluid at a fixed value of intensified $\phi_{hnf}$ compared to the Al2O3/water nanofluid when an amount of higher conductivity nanoparticles (Cu) added to it. Besides, the rate of heat transfer in Cu/water nanofluid declines when the lower thermal conductivity Al2O3 nanoparticles are added to the mixture.

Keywords

Acknowledgements

M.M. Rahman would like to thank the Ministry of Higher Education Innovation and Research, Oman for Funding through the research grant RC/RG-SCI/MATH/20/01.

Conflict of Interests: The authors declare that they do not have any conflict of interests.

Citation

Rahman, M.M., Saghir, Z. and Pop, I. (2022), "Free convective heat transfer efficiency in Al2O3–Cu/water hybrid nanofluid inside a rectotrapezoidal enclosure", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 32 No. 1, pp. 196-218. https://doi.org/10.1108/HFF-11-2020-0748

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles