To read the full version of this content please select one of the options below:

Strong fluid–solid interactions with segregated CFD solvers

Mathieu Olivier (Universite Laval Faculte des sciences et de genie, Quebec, Canada)
Olivier Paré-Lambert (Universite Laval Faculte des sciences et de genie, Quebec, Canada)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 31 July 2019

Issue publication date: 30 August 2019

Abstract

Purpose

This paper aims to present a fluid-structure coupling partitioned scheme involving rigid bodies supported by spring-damper systems. This scheme can be used with already existing fluid flow solvers without the need to modify them.

Design/methodology/approach

The scheme is based on a modified Broyden method. It solves the equations of solid body motion in which the external forces coming from the flow are provided by a segregated flow solver used as a black box. The whole scheme is implicit.

Findings

The proposed partitioned method is stable even in the ultimate case of very strong fluid–solid interactions involving a massless cylinder oscillating with no structural damping. The overhead associated with the coupling scheme represents an execution time increase by a factor of about 2 to 5, depending on the context. The scheme also has the advantage of being able to incorporate turbulence modeling directly through the flow solver. It has been tested successfully with URANS simulations without wall law, thus involving thin high aspect-ratio cells near the wall.

Originality/value

Such problems are known to be very difficult to solve and previous studies usually rely on monolithic approaches. To the authors' knowledge, this is the first time a partitioned scheme is used to solve fluid–solid interactions involving massless components.

Keywords

Citation

Olivier, M. and Paré-Lambert, O. (2019), "Strong fluid–solid interactions with segregated CFD solvers", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29 No. 7, pp. 2237-2252. https://doi.org/10.1108/HFF-09-2018-0497

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited