To read the full version of this content please select one of the options below:

Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions

Z.B. Xing (Zhongtong Bus Holding Co. Ltd., Liaocheng, China)
Xingchao Han (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, China)
Hanbing Ke (Wuhan Second Ship Design and Resource Institute, Wuhan, China)
Q.G. Zhang (Henan Agricultural University, Zhengzhou, China)
Zhiping Zhang (Henan Agricultural University, Zhengzhou, China)
Huijin Xu (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, China)
Fuqiang Wang (Harbin Institute of Technology Weihai Campus, Weihai, China)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 22 March 2021

Abstract

Purpose

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods.

Design/methodology/approach

Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established.

Findings

Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model.

Originality/value

This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.

Keywords

Acknowledgements

The authors give our acknowledgement to the National Natural Science Foundation of China (Nos. 51876118 and 51876146), National Key Research and Development Program (2018YFE0206600), and the Open Fund of Science and Technology on Thermal Energy and Power Laboratory (No. TPL2018B03).

Citation

Xing, Z.B., Han, X., Ke, H., Zhang, Q.G., Zhang, Z., Xu, H. and Wang, F. (2021), "Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/HFF-07-2020-0481

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited