To read this content please select one of the options below:

Heat transfer enhancement via Görtler flow with spatial numerical simulation

Vinicius Malatesta (Centro Tecnológico de Joinville, Universidade Federal de Santa Catarina, Joinville, Brazil)
Josuel Kruppa Rogenski (Departamento de Matemática Aplicada e Estatística, Universidade de São Paulo, São Carlos, Brazil)
Leandro Franco de Souza (Departamento de Matemática Aplicada e Estatística, Universidade de São Paulo, São Carlos, Brazil)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 3 January 2017

153

Abstract

Purpose

The centrifugal instability mechanism of boundary layers over concave surfaces is responsible for the development of quasi-periodic, counter-rotating vortices aligned in a streamwise direction known as Görtler vortices. By distorting the boundary layer structure in both the spanwise and the wall-normal directions, Görtler vortices may modify heat transfer rates. The purpose of this study is to conduct spatial numerical simulation experiments based on a vorticity–velocity formulation of the incompressible Navier–Stokes system of equations to quantify the role of the transition in the heat transfer process.

Design/methodology/approach

Experiments are conducted using an in-house, parallel, message-passing code. Compact finite difference approximations and a spectral method are used to approximate spatial derivatives. A fourth-order Runge–Kutta method is adopted for time integration. The Poisson equation is solved using a geometric multigrid method.

Findings

Results show that the numerical method can capture the physics of transitional flows over concave geometries. They also show that the heat transfer rates in the late stages of the transition may be greater than those for either laminar or turbulent ones.

Originality/value

The numerical method can be considered as a robust alternative to investigate heat transfer properties in transitional boundary layer flows over concave surfaces.

Keywords

Acknowledgements

The authors acknowledge the financial support received from São Paulo Research Foundation (FAPESP) under grant numbers 2010/00495-1 and 2011/08010-0.

Citation

Malatesta, V., Rogenski, J.K. and Souza, L.F.d. (2017), "Heat transfer enhancement via Görtler flow with spatial numerical simulation", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 1, pp. 189-209. https://doi.org/10.1108/HFF-05-2015-0173

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles