To read the full version of this content please select one of the options below:

Numerical study on the effects of variable properties and nanoparticle diameter on nanofluid flow and heat transfer through micro-annulus

Morteza Heydari (School of Mechanical Engineering, University of Tehran, Tehran, Iran)
Hossein Shokouhmand (School of Mechanical Engineering, University of Tehran, Tehran, Iran)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 7 August 2017

Abstract

Purpose

The purpose of this paper is to evaluate differences between the results of constant property and variable property approaches in solving the problem of Al2O3-water nanofluid heat transfer in an annular microchannel. Also, the effect of nanoparticle diameter on flow and heat transfer characteristics is investigated.

Design/methodology/approach

Thermo-physical properties of the nanofluid including density, specific heat, viscosity and thermal conductivity are assumed to be temperature dependent. Governing equations are descritized using the finite volume method and solved by SIMPLE algorithm.

Findings

The results reveal that the constant property assumption is unable to predict the correct trend of variations along the microchannel for some of the characteristics, especially when the range of temperature change near the wall is considerable. In the fully developed region, constant property solution overestimates the values of shear stress near the walls of the microchannel. In addition, the values of Nusselt numbers are different for the two solutions. Furthermore, a decrease in wall’s shear stress has been observed as a result of increasing nanoparticle size.

Originality/value

This paper reflects that how the friction factor and heat transfer vary along the microchannel in temperature dependent modeling, which is not reflected in the results of constant property approach. To the best of the authors’ knowledge, there is no similar investigation of the effect of nanofluid variable properties with Pr=5 or in annular geometry.

Keywords

Citation

Heydari, M. and Shokouhmand, H. (2017), "Numerical study on the effects of variable properties and nanoparticle diameter on nanofluid flow and heat transfer through micro-annulus", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 8, pp. 1851-1869. https://doi.org/10.1108/HFF-04-2016-0164

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited