To read the full version of this content please select one of the options below:

A new reduced model for the moments of droplet size distribution in condensing flow

Xiaoke Ku (Department of Mechanical Engineering, University of Twente, Enschede, The Netherlands)
Rob Hagmeijer (Department of Mechanical Engineering, University of Twente, Enschede, The Netherlands)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 2 March 2015

Abstract

Purpose

The purpose of this paper is to create a computationally efficient reduced model (RM) for the moments of droplet size distribution (DSD) in condensing flow.

Design/methodology/approach

The kinetic equation (KE) exactly describes the time dependence of the DSD and can be regarded as the most rigorous representation of a system with condensation. Because of the typical wide range in droplet size, the KE requires excessive computational time and is not attractive for most practical applications. To reduce the overall computational efforts, a novel set of moment equations, derived from the KE has been proposed.

Findings

To demonstrate the simplicity and accuracy of the model, the authors employ a typical nucleation pulse experiment for which benchmark KE-solutions have also been computed. Comparison of predicted moments from both the RM and the KE approach reveals that the RM is capable of capturing the evolving feature of moments with reasonable accuracy.

Originality/value

The authors have created a novel reduced method for numerical computations of the lower-order moments of the DSD in condensing flow. Unlike the typical method of moments, the RM eliminates the need for assumptions on the shape of the distribution function and could estimate the moments at very low computational cost.

Keywords

Acknowledgements

The authors would like to express their gratitude to Dr R.S.R. Sidin of the University of Suriname, for giving some advice on the subject.

Dr Xiaoke Ku can now be contacted at Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1a, 7491 Trondheim, Norway.

Citation

Ku, X. and Hagmeijer, R. (2015), "A new reduced model for the moments of droplet size distribution in condensing flow", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 25 No. 2, pp. 320-332. https://doi.org/10.1108/HFF-04-2013-0136

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited