TY - JOUR AB - Purpose– The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process. Design/methodology/approach– The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability. Findings– The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid. Originality/value– The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials. VL - 25 IS - 1 SN - 0961-5539 DO - 10.1108/HFF-04-2013-0124 UR - https://doi.org/10.1108/HFF-04-2013-0124 AU - Fanglong Zhu AU - Qianqian Feng AU - Rangtong Liu AU - Kejing Li AU - Yu Zhou PY - 2015 Y1 - 2015/01/01 TI - A fractional approach to wicking fluid flow in nonwoven porous fabric T2 - International Journal of Numerical Methods for Heat & Fluid Flow PB - Emerald Group Publishing Limited SP - 121 EP - 128 Y2 - 2024/03/19 ER -