To read the full version of this content please select one of the options below:

Mixing of electrokinetically-driven power-law fluids in zigzag microchannels

Ching-Chang Cho (Department of Vehicle Engineering, National Formosa University, Yunlin, Taiwan)
Cha’o-Kuang Chen (Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan)
Her-Terng Yau (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 2 March 2015

Abstract

Purpose

The purpose of this paper is to study the mixing performance of the electrokinetically-driven power-law fluids in a zigzag microchannel.

Design/methodology/approach

The Poisson-Boltzmann equation, the Laplace equation, the modified Cauchy momentum equation, and the convection-diffusion equation are solved to describe the flow characteristics and mixing performance of power-law fluids in the zigzag microchannel. A body-fitted grid system and a generalized coordinate transformation method are used to model the grid system and transform the governing equations, respectively. The transformed governing equations are solved numerically using the finite-volume method.

Findings

The mixing efficiency of dilatant fluids is higher than that of pseudoplastic fluids. In addition, the mixing efficiency can be improved by increasing the width of the zigzag blocks or extending the total length of the zigzag block region.

Originality/value

The results presented in this study provide a useful insight into potential strategies for enhancing the mixing performance of the power-law fluids in a zigzag microchannel. The results of this study also provide a useful source of reference for the development of efficient and accurate microfluidic systems.

Keywords

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract Nos. 101-2221-E-006-092-MY2 and NSC 101-2811-E-006-057.

Citation

Cho, C.-C., Chen, C.-K. and Yau, H.-T. (2015), "Mixing of electrokinetically-driven power-law fluids in zigzag microchannels", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 25 No. 2, pp. 391-399. https://doi.org/10.1108/HFF-04-2013-0107

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited