To read this content please select one of the options below:

Computational fluid dynamics simulation and experimental investigation of a thermoelectric system for predicting influence of applied voltage and cooling water on cooling performance

Mehmet Akif Ceviz (Department of Mechanical Engineering, Erzurum Technical University, Erzurum, Turkey)
Faraz Afshari (Department of Mechanical Engineering, Erzurum Technical University, Erzurum, Turkey)
Burak Muratçobanoğlu (Department of Mechanical Engineering, Erzurum Technical University, Erzurum, Turkey)
Murat Ceylan (Department of Mechanical Engineering, Erzurum Technical University, Erzurum, Turkey)
Eyüphan Manay (Department of Mechanical Engineering, Erzurum Technical University, Erzurum, Turkey)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 10 June 2022

Issue publication date: 3 January 2023

209

Abstract

Purpose

The purpose of this paper is to experimentally and numerically investigate the cooling performance of the air-to-water thermoelectric cooling system under different working conditions.

Design/methodology/approach

An air-to-water thermoelectric cooling system was designed and manufactured according to the principle of discrete binary thermoelectric Peltier modules, and the thermal performance, heat transfer rate and average COP values were examined at different cooling water temperatures and voltages applied. Additionally, numerical simulations were performed by computational fluid dynamics approach to investigate the temperature distribution and airflow structure inside the cooling chamber.

Findings

Analyses were performed using experimental tests and numerical methods. It was concluded that, by decreasing the cooling water temperature from 20 to 5 °C, the average COP increases about 36%. The voltage analysis showed that the efficiency of the system does not always increase as the voltage rises; more importantly, the optimum voltage is different and depends on whether it is desired to increase COP or increase the cooling rate.

Originality/value

In the studies published in the field of thermoelectric cooling systems, little attention has been paid to the voltage applied and its relationship to other operating conditions. In most cases, the tests are performed at a constant voltage. In this study, several options, including applied voltage and cooling water temperature, were considered simultaneously and their effects on performance have been tested. It was found that under such studies, optimization work should be done to evaluate maximum performance in different working conditions.

Keywords

Acknowledgements

This project was supported by Research Project Foundation of the Erzurum Technical University (BAP Project No. 2020/10). The authors of this research gratefully acknowledge the support of this study.

Citation

Ceviz, M.A., Afshari, F., Muratçobanoğlu, B., Ceylan, M. and Manay, E. (2023), "Computational fluid dynamics simulation and experimental investigation of a thermoelectric system for predicting influence of applied voltage and cooling water on cooling performance", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33 No. 1, pp. 241-262. https://doi.org/10.1108/HFF-03-2022-0160

Publisher

:

Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles