Analysis of coal suspensions evolution during combustion process

Agnieszka Kijo-Kleczkowska (Politechnika Czestochowska, Czestochowa, Poland)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Publication date: 24 July 2019



The paper aims to undertake coal–water suspension combustion, in air and in fluidised bed conditions. Fluidised bed conditions are the best to efficiently and ecologically use fuel. Combustion technologies using coal–water fuels create a number of new possibilities for organising combustion processes so that they fulfil contemporary requirements. The aim of the process was to show how the specificity of combustion of coal–water suspensions in the fluidised bed changes the kinetics of the process, compared to combustion in the air stream. Changes of the surface and the centre temperature and mass of the coal suspension during combustion, and evolution of fuels during process are presented in the paper.


Experimental character of the research required the research stand preparation, as well as working out of the measurements methodology (Kijo-Kleczkowska, 2010). The research stand (Figure 1a) was made of ceramic blocks in which the quartz pipes were put. The heating element of the stand comprised three heating coils of 2.0 kW. Each heater was placed in small quartz tubes. These tubes were built into the quartz tube which was thermally insulated by fibre material Al2O3 and which was covered with steel sheet. Combustion chamber constituted the quartz pipe, which was additionally insulated thermally, to keep the necessary temperature of the entering gas and to reduce the heat loss. The compressed air was transported to the quartz tube through the electro-valve, the control valve and the rotameter. This study stand allowed for the comparison of the combustion process of coal–water suspensions, in air and in fluidised bed conditions. To study in the fluidised bed, quartz sand was used. Depending on the velocity of air inflowing from the bottom of the bed, different bed characteristics were obtained – from bubble – to circulating-beds. The fumes were removed outside by means of a fan fume cupboard. To regulate the temperature inside the combustion chamber, the Lumel microprocessor thermoregulator was applied. The regulator controlled the work of tri-phase Lumel power controller supplying the main heating elements (gas heater) allowing to measure the actual temperature with accuracy of measurements to 20°C. The temperature measurements in the combustion chamber were carried out by means of the thermocouple NiCr-NiAl. To establish the centre and surface temperature and mass of the fuel, a special instrument stalk was constructed (Figure 1b). It had two thermocouples PtRh10-Pt, placed in two thin quartz tubes connected to the scale. One of the thermocouples was located inside the fuel, while the other served as a basket which was to support the fuel. It also touched the surface of the fuel. The thermocouples were connected to the computer to record the experimental results. The essential stage of the preliminary work was to make out a suspension, which was a mixture of fuel dust (hard coal dust or dried coal-sludge dust) and water. To produce the suspension it was necessary to prepare fuel dust after grinding and sifting it, and then adding water, to obtain a suspension moisture of 20, 35 or 50 per cent. The hard coal was applied in the research. The analysis of fuel dust (in air-dry state) is shown in Table I. The testing of the porosity of fuel was made with mercury porosimetry, carried out in the Pascal 440 apparatus, applying pressure from 0.1 to 200 MPa. This method involves the injection of mercury into the pores of the fuel, using high pressures (Kijo-Kleczkowska, 2010).


1. Under experimental conditions, during combustion in the fluidised bed, intensive heating of the suspension is observed in the initial stage of the process, followed by the removal of heat from the suspension by the contacting quartz material, leading to lowering of the average fuel temperature and extension of the combustion time, compared to the process carried out in air. 2. Measurements using mercury porosimetry enable the identification of the change of suspension porosity. 3. Devolatilisation and combustion of volatiles lead to an increase in the pores’ size in the fuel and their coalescence. 4. Combustion of fuel leads to the development of cracks in the suspension, and its structure changes under the influence of temperature. Cracks are caused by the formation of thermal stresses inside the fuel. 5. Under experimental conditions, suspension combustion in the fluidised bed causes an increase in volume participation of pores, with larger sizes of pores (3,500-5,000 nm), compared to combustion in the air.


The paper undertakes the evolution of suspension fuel, made of a hard coal and a coal-sludge, during combustion in air and in the fluidised bed.



Kijo-Kleczkowska, A. (2019), "Analysis of coal suspensions evolution during combustion process", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. ahead-of-print No. ahead-of-print.

Download as .RIS



Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.