To read this content please select one of the options below:

Assessment of modelling strategies for film cooling

Lorenzo Mazzei (Department of Industrial Engineering Florence (DIEF), University of Florence, Florence, Italy)
Antonio Andreini (Department of Industrial Engineering Florence (DIEF), University of Florence, Florence, Italy)
Bruno Facchini (Department of Industrial Engineering Florence (DIEF), University of Florence, Florence, Italy)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 2 May 2017

228

Abstract

Purpose

Effusion cooling represents one the most innovative techniques for the thermal management of aero-engine combustors liners. The huge amount of micro-perforations implies a significant computational cost if cooling holes are included in computational fluid dynamics (CFD) simulations; therefore, many efforts are reported in literature to develop lower-order approaches aiming at limiting the number of mesh elements. This paper aims to report a numerical investigation for validating two approaches for modelling film cooling, distinguished according to the way coolant is injected (i.e. through either point or distributed mass sources).

Design/methodology/approach

The approaches are validated against experimental data in terms of adiabatic effectiveness and heat transfer coefficient distributions obtained for effusion cooled flat plates. Additional reynolds-averaged naver stokes (RANS) simulations were performed meshing also the perforation, so as to distinguish the contribution of injection modelling with respect to intrinsic limitations of turbulence model modelling.

Findings

Despite the simplified strategies for coolant injection, this work clearly shows the feasibility of obtaining a sufficiently accurate reproduction of coolant protection in conjunction with a significant saving in terms of computational cost.

Practical/implications

The proposed methodologies allow to take into account the presence of film cooling in simulations of devices characterized by a huge number of holes.

Originality/value

This activity represents the first thorough and quantitative comparison between two approaches for film cooling modelling, highlighting the advantages involved in their application.

Keywords

Acknowledgements

This work was carried out during the Master Thesis of Alessandro Frontani, whose contribution is gratefully acknowledged. The authors would like to acknowledge also the valuable support offered by Dr Luca Andrei.

Citation

Mazzei, L., Andreini, A. and Facchini, B. (2017), "Assessment of modelling strategies for film cooling", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 5, pp. 1118-1127. https://doi.org/10.1108/HFF-03-2016-0086

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles