TY - JOUR AB - Purpose The study aims to focus on rotation effects on a ribbed channel of gas turbine blades for internal cooling. The combination and interaction between secondary flows generated by angled rib geometry and Coriolis forces in the rotating channel are studied numerically.Design/methodology/approach A radially outward flow passage as an internal cooling test model with and without ribs is used to perform the investigation. Aspect ratio of the passage is 1:1. Square ribs with e/Dh = 0.1, p/e = 10 and four various rib angles of 90°, 75°, 60° and 45° are configured on both the leading and trailing surfaces along the rotating duct. The study covers a Reynolds number of 10,000 and Rotation number in the range of 0-0.15.Findings Nusselt numbers in the ribbed duct are 2.5 to 3.5 times those of a smooth square duct, depending on the Rotation number and rib angle. The maximum value is attained for the 45° ribbed surface. The synergy angle between the velocity and temperature gradients is improved by the angled rib secondary flows and Coriolis vortex. The decrease of the synergy angle is 8.9, 13.4, 12.1 and 10.1 per cent for the 90°, 75°, 60° and 45° ribbed channels with rotation, respectively. Secondary flow intensity is increased by rotation in the 90° and 75° ribbed ducts and is decreased in 45° and 60° ribbed cases for which the rib-induced secondary flow dominates.Originality/value The primary motivation behind this work is to investigate the possibility of heat transfer enhancement by vortex flow with developing turbulence in the view point of the field synergy principle and secondary flow intensity. VL - 29 IS - 1 SN - 0961-5539 DO - 10.1108/HFF-02-2018-0081 UR - https://doi.org/10.1108/HFF-02-2018-0081 AU - Hoseinalipour Seyyed Mostafa AU - Shahbazian Hamidreza AU - Sunden Bengt Ake PY - 2018 Y1 - 2018/01/01 TI - Influences of secondary flow induced by Coriolis forces and angled ribs on heat transfer in a rotating channel T2 - International Journal of Numerical Methods for Heat & Fluid Flow PB - Emerald Publishing Limited SP - 388 EP - 417 Y2 - 2024/04/25 ER -