To read this content please select one of the options below:

Influences of secondary flow induced by Coriolis forces and angled ribs on heat transfer in a rotating channel

Seyyed Mostafa Hoseinalipour (Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran)
Hamidreza Shahbazian (Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran)
Bengt Ake Sunden (Department of Energy Sciences, Lund University, Lund, Sweden)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 4 December 2018

Issue publication date: 29 January 2019

192

Abstract

Purpose

The study aims to focus on rotation effects on a ribbed channel of gas turbine blades for internal cooling. The combination and interaction between secondary flows generated by angled rib geometry and Coriolis forces in the rotating channel are studied numerically.

Design/methodology/approach

A radially outward flow passage as an internal cooling test model with and without ribs is used to perform the investigation. Aspect ratio of the passage is 1:1. Square ribs with e/Dh = 0.1, p/e = 10 and four various rib angles of 90°, 75°, 60° and 45° are configured on both the leading and trailing surfaces along the rotating duct. The study covers a Reynolds number of 10,000 and Rotation number in the range of 0-0.15.

Findings

Nusselt numbers in the ribbed duct are 2.5 to 3.5 times those of a smooth square duct, depending on the Rotation number and rib angle. The maximum value is attained for the 45° ribbed surface. The synergy angle between the velocity and temperature gradients is improved by the angled rib secondary flows and Coriolis vortex. The decrease of the synergy angle is 8.9, 13.4, 12.1 and 10.1 per cent for the 90°, 75°, 60° and 45° ribbed channels with rotation, respectively. Secondary flow intensity is increased by rotation in the 90° and 75° ribbed ducts and is decreased in 45° and 60° ribbed cases for which the rib-induced secondary flow dominates.

Originality/value

The primary motivation behind this work is to investigate the possibility of heat transfer enhancement by vortex flow with developing turbulence in the view point of the field synergy principle and secondary flow intensity.

Keywords

Citation

Hoseinalipour, S.M., Shahbazian, H. and Sunden, B.A. (2019), "Influences of secondary flow induced by Coriolis forces and angled ribs on heat transfer in a rotating channel", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29 No. 1, pp. 388-417. https://doi.org/10.1108/HFF-02-2018-0081

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles