To read the full version of this content please select one of the options below:

MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface

B.J. Gireesha (Department of Mathematics, Kuvempu University, Shankaraghatta, India)
M. Archana (Department of Mathematics, Kuvempu University, Shankaraghatta, India)
Prasannakumara B.C. (Department of Mathematics, Government First Grade College, Koppa, India)
R.S. Reddy Gorla (Department of Mechanical Engineering, Purdue University, Westville, Indiana, USA)
Oluwole Daniel Makinde (Faculty of Military Science, Stellenbosch University, Saldanha, South Africa)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 4 December 2017

145

Abstract

Purpose

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson nanofluid over a stretching surface. The combined effects of nonlinear thermal radiation, magnetic field, buoyancy forces, thermophoresis and Brownian motion are taken into consideration with convective boundary conditions.

Design/methodology/approach

Similarity transformations are used to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge–Kutta–Fehlberg fourth-fifth-order method along with shooting technique.

Findings

The impact of several existing physical parameters such as Casson parameter, mixed convection parameter, regular buoyancy ratio parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, temperature ratio parameter on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that the solutal component increases for Dufour Lewis number, whereas it decreases for nanofluid Lewis number. Moreover, velocity profiles decrease for Casson parameter, while the Nusselt number increases for Biot number, radiation and temperature ratio parameter.

Originality/value

This paper is a new work related to three-dimensional double-diffusive flow of Casson nanofluid with buoyancy and nonlinear thermal radiation effect.

Keywords

Citation

Gireesha, B.J., Archana, M., B.C., P., Gorla, R.S.R. and Makinde, O.D. (2017), "MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 12, pp. 2858-2878. https://doi.org/10.1108/HFF-01-2017-0022

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles