To read this content please select one of the options below:

Transient mixed convection flow of nanofluids in a vertical tube

Catalin Viorel Popa (GRESPI/Thermomécanique, Université de Reims Champagne-Ardenne, Reims, France)
Cong Tam Nguyen (Faculty of Engineering, Université de Moncton, Moncton, Canada)
Stéphane Fohanno (GRESPI/Thermomécanique, Université de Reims Champagne-Ardenne, Reims, France)
Guillaume Polidori (GRESPI/Thermomécanique, Université de Reims Champagne-Ardenne, Reims, France)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 25 February 2014

190

Abstract

Purpose

In the present work, a theoretical model based on the full Navier-Stokes and energy equations for transient mixed convection in a vertical tube is extended to nanofluids with nanoparticle volume fraction up to 5 percent to ensure a Newtonian fluid behaviour. The paper aims to discuss these issues.

Design/methodology/approach

The nanofluids considered, alumina/water and CuO/water, flow inside a vertical tube of circular cross-section, which is subjected to convective heat exchange at the outer surface. The transient regime is caused by a sudden change of nanofluid temperature at the tube inlet. The range of the Richardson number (1.6=Ri=2.5) investigated in this study corresponds to classic cases of mixed convection flow.

Findings

Results have shown a significant reduction in the size of the recirculation zone near the wall when the particle volume fraction increases. This may be attributed to the viscosity increase with the volume fraction. Moreover, the flow structure clearly changes when the convective heat transfer coefficient is modified. A decrease of the wall temperature along the tube was found when increasing the convective heat transfer coefficient imposed at the tube external surface.

Research limitations/implications

The problem formulation in 2D axisymmetric geometry includes the continuity, the Navier-Stokes and energy equations and is based on the stream function and vorticity; the numerical solution of equations is carried out using a finite difference method.

Practical implications

From an economic point of view, this research paper is innovative in the sense that it considers nanofluids as a new and more efficient way to transfer heat. This paper could find applications for heat exchange purposes of compact systems with high thermal loads.

Originality/value

Across the world, a still growing number of research teams are investigating nanofluids and their properties. Investigations concern several aspects such as the preparation of the nanofluids, as well as the applications of these nanofluids for convective heat transfer purposes. The dynamical study will consist in the instantaneous and spatial characterization of the dynamic flow field for different nanoparticle volume fractions.

Keywords

Citation

Viorel Popa, C., Tam Nguyen, C., Fohanno, S. and Polidori, G. (2014), "Transient mixed convection flow of nanofluids in a vertical tube", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24 No. 2, pp. 376-389. https://doi.org/10.1108/HFF-01-2012-0017

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Related articles