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Abstract

Purpose – The purpose of this paper is to examine the effectiveness of an improved dummy variables control
grey model (DVCGM) considering the hysteresis effect of government policies in China’s energy intensity (EI)
forecasting.
Design/methodology/approach – Energy consumption is considered as an important driver of economic
development. China has introduced policies those aim at the optimization of energy structure and EI. In this
study, EI is forecasted by an improved DVCGM, considering the hysteresis effect of energy-saving policies of
the government. A nonlinear optimization method based on particle swarm optimization (PSO) algorithm is
constructed to calculate the hysteresis parameter. A one-step rolling mechanism is applied to provide input
data of the prediction model. Grey model (GM) (1, N), DVCGM (1, N) and ARIMAmodel are applied to test the
accuracy of the improved DVCGM (1, N) model prediction.
Findings –The results show that the improvedDVCGMprovides reliable results andworkswell in simulation
and predictions using multivariable data in small sample size and time-lag virtual variable. Accordingly, the
improvedDVCGM notes the hysteresis effect of government policies and significantly improves the prediction
accuracy of China’s EI than the other three models.
Originality/value – This study estimates the EI considering the hysteresis effect of energy-saving
policies in China by using an improved DVCGM. The main contribution of this paper is to propose a
model to estimate EI, considering the hysteresis effect of energy-saving policies and improve forecasting
accuracy.
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1. Introduction
Energy consumption is considered as an important driver of economic growth. Energy
intensity (EI), which is the ratio of total energy consumption to gross domestic product (GDP)
of a country or region in a certain period of time, measures the performance of energy
utilization. According to the energy section of the National Bureau of Statistics (NBS), China’s
largest energy consumption is 4,640 million tons of standard coal, and China has become the
world largest energy consumer. Entering a new normal period, the government focuses on a
crucial rebalancing and diversifying economy, with higher requirements for sustainable
development. In the 13th Five-Year Plan for economic and social development, a total
reduction of 15% has been set as the energy performance target. It is imperative to estimate
and predict the EI to evaluate energy conservation and emission reduction. However, due to
the complexity and dynamics of social economy, the implementation of energy conservation
and emission reduction policies will not immediately reduce EI, and there is often a certain
time lag. This inevitable time-lag should be taken into account to estimate and forecast the EI
in China accurately.

Numerous research studies have studied the influencing factors and driving forces of EI
through econometrics methods such as cointegration analysis, metrology and decomposition
analysis and scenario analysis. Zhu et al. (2015) applied cointegration analysis method on the
large and state-owned enterprises and found that energy-saving regulations in China are one
of themost important factors in reducing aggregate EI. Karimu et al. (2017) studied the EI and
convergence of Swedish industry by combining metrology and decomposition analytical
methods. Ma andYu (2017) used panel datamodel to discuss the driving factors which lead to
EI decline. It is revealed that industrial structure, energy conservation regulations and EI are
closely related. Tan et al. (2018) used index decomposition analysis and production
decomposition analysis methods to analyze the factors which are related to the decline in the
EI and pointed out that technology improvement effect is the most significant factor. In EI
forecasting, Pao et al. (2012) used improved grey models (GMs) to predict China’s CO2

emissions, energy consumption and economic growth. Dong et al. (2018) estimated the driving
force of regional EI in China and forecasted the potential of regional energy conservationwith
scenario analysis. Wu et al. (2018) used a new multivariable GM to predict energy
consumption in Shandong Province.

The grey system theory is an interdisciplinary theory proposed by Deng (1982) and the
grey prediction method applies well to small size data forecasting. As an important part of
grey prediction theory, the GM (1, N) model is the basic model of multivariable grey system
modeling approach. In recent years, numerous scholars have thoroughly discussed themodel
parameters optimization (Tien, 2005, 2010), the model accuracy improvement (Tien, 2011;
Wang et al., 2016) and the expansion of the GM (Guo et al., 2013; Kose and Tasci, 2015, 2019;
Ding et al., 2017).

Based on grey multivariable model with time-lagged system, Zhai et al. (1996) introduced
the lag term into the GM (1, 2) model and determined the delay parameters with the goal
of minimizing the modeling error. Hao (2011) used grey correlation analysis to determine
time-lag period between variables and then on this basis to establish forecast model of
GM (1, N). Zhang et al. (2015) constructed a time-delay multivariable discrete GM, DDGM
(1, N) model, by introducing a time-delay control factor and solved the time-delay
parameters by using the grey dimensionally expanding identification method, which
obtained a good application effect. Ma and Yu (2017) used a novel time-delay multivariable
GM to predict the natural gas consumption in China. Dang et al. (2017) constructed the
discrete delay grey multivariable DDGMD (1, N) model by introducing the driving
information control adjustment coefficient T and the action coefficient λ and solved the
coefficient respectively by grey dimension expansion method and particle swarm
optimization (PSO) algorithm. Xiong (2019) built a multivariable time-delay discrete MGM
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(1,m, t) model and studied the mechanism of modeling and the process of modeling, and the
calculation method of time delay is given. The hysteresis effect is discussed by an example
to verify the validity of the model.

GM (1, N) model, in spite of successfully applying in various fields, sometimes
ignores the influence of virtual variables such as policy on the main system in practical
applications. Zhang (2016) considered the influence of dummy variables on system
behavior variables and built a discrete multivariable prediction model based on dummy
variables, which further expanded the application scope of the model. Ding et al. (2018)
introduced the dummy variables into the GM (1, N) model, gave the concrete model
construction method in mathematics and verified the effectiveness of the new model
with cases.

Generally speaking, we have abundant literature discussing the influencing factors of
EI and its forecasting. Furthermore, there are some practices targeting the time-lag
phenomenon using grey theory. The existing literature has explored and studied the GM
from multiple angles, but there is still room for the GM to expand in the combination of
dummy variables and time-delay systems. As the common GM (1, N) model does not take
into account the time delay between variables, and there are dummy variables in the
systemwhich are difficult to bemeasured by quantity, our optimizedDVCGM (1, N) model,
which is short for dummy variables control grey model of N variables, incorporates the
above two features and improves prediction accuracy to a satisfying level. It is practical
significant because the time delay of dummy variables, i.e. government policy, is often
seen in real world but is difficult to measure. The optimized DVCGM (1, N) model takes
these variables into consideration, solves the practical problem and expands the grey
system theory and the grey prediction method system, which improves the accuracy of
grey prediction model.

This paper’s main interest is to estimate and forecast EI by considering the influence of
government policies and to test the accuracy of the improved GM through a comparison
study. The main contribution of the study to the literature is to consider hysteresis effect and
increase the forecast accuracy. It is imperative for optimizing energy structure, improving
energy utilization efficiency and ensuring energy security. The results show that the
improved GM produces better results than the other three conventional models. The rest of
the paper is organized as follows. Section 2 briefly introduces grey theory and multivariable
grey prediction models. A nonlinear optimization method based on PSO algorithm is
constructed to calculate the hysteresis parameter in the improved model. In Section 3, EI is
estimated by considering the hysteresis effect of energy-saving policies by an improved
DVCGM (1, N) model. We compare the results with the other two GMs and one econometric
model. The improved DVCGM (1, N) model has the best performance in the estimation
comparison and is applied to forecast future EI. Section 4 is the conclusion of the study with
the limitation and future path.

2. Methodology
The three grey prediction models used in this paper are interrelated and in a progressive
order. TheGM (1, N) model is a traditional multivariable grey prediction model. TheDVCGM
(1, N) model introduces virtual variables, taking into account the influence of policy and other
factors on the basis of the GM (1, N) model. Time-delay parameter is introduced in the
improved DVCGM (1, N) model, considering the hysteresis effects of historical variables,
which further enriches the existing grey prediction theory.

2.1 GM (1, N) model
Grey prediction model can be regarded as two levels of work. At a lower level, the original
sequence produces the sequence of generation by one accumulative generation (1-AGO), and
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then it forms the sequence of mean generation of consecutive neighbors; similarly, the
sequence of influencing factors generates the sequence of generation by 1-AGO; Constructing
B and Y matrix and calculating system parameters through ordinary least squares (OLS)
regression. Once the system parameters a and b are determined, we can obtain the time
response function (TRF) by solving the whitenization equation. At a higher level, the
continuous differential equation with initial values is used as the reflection equation, and the
discrete data are mapped to a manageable function, which is further restored to the TRF as
the simulation basis. Typical procedures can be described briefly by the program in Figure 1.

Definition 1. The original sequence is

X
ð0Þ
1 ¼ �

x
ð0Þ
1 ð1Þ; xð0Þ1 ð2Þ; :::; xð0Þ1 ðnÞ�

X
ð1Þ
1 is the 1 - AGO sequence fromX

ð0Þ
1 , andX

ð1Þ
i is the sequences of the relevant factors, where

X
ð1Þ
i ðkÞ ¼

Xk

m¼1

x
ð0Þ
i ðmÞ

Z
ð1Þ
1 is the sequence of mean generation of consecutive neighbors from X

ð1Þ
1 , where

Z
ð1Þ
1 ðkÞ ¼ 0:5X

ð1Þ
1 ðk� 1Þ þ 0:5X

ð1Þ
1 ðkÞ; ðk ¼ 2; 3; . . . ; nÞ

Definition 2. Denote Eq (1) as the definition formula of GM (1, N) model:

X
ð0Þ
1 ðkÞ þ aZ

ð1Þ
1 ðkÞ ¼

Xn

i¼2

biX
ð1Þ
i ðkÞ (1)

where k 5 2, 3, n, a is the development coefficient and b1; b2; � � � ; bn are the grey input
coefficients obtained by the least squares method. To determine these coefficients, the matrix
B and YN are defined as follows:

YN ¼

2666664
x
ð0Þ
1 ð2Þ
x
ð0Þ
1 ð3Þ
..
.

x
ð0Þ
1 ðnÞ

3777775;B ¼

26666664
�z

ð1Þ
1 ð2Þ X

ð1Þ
2 ð2Þ � � �X ð1Þ

n ð2Þ
�z

ð1Þ
1 ð3Þ X

ð1Þ
2 ð3Þ � � �X ð1Þ

n ð3Þ
..
. ..

. ..
.

�z
ð1Þ
1 ðnÞ X

ð1Þ
2 ðnÞ � � �X ð1Þ

n ðmÞ

37777775
The values of the coefficients a and b1; b2; � � � ; bn can be determined by the following equation:

bP ¼

2664
a

b2

..

.

bn

3775 ¼ ðBTBÞ−1BTYn

Definition 3. Let Eq (2) be defined as the differential equation (or) called grey reflection
equation:

dx
ð0Þ
1

dt
þ ax

ð0Þ
1 ðtÞ ¼

Xn

i¼1

bix
ð1Þ
i ðtÞ (2)
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Figure 1.
Principal diagram of
GM (1, N) model
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After determining the coefficients of a and b1; b2; � � � ; bn, the differential equation of the GM
can be determined by Eq (2). The solution of the above differential equation is as follows:

bX ð1Þ
1 ðkþ 1Þ ¼

(
X

ð0Þ
1 � ð1=aÞ

Xn

i¼2

bbi−1X ð1Þ
i ðkÞ

)
3e−bak þ ð1=aÞ

Xn

i¼2

bbi−1X ð1Þ
i ðkÞ (3)

where bX ð1Þ
1 ðkÞ is the prediction of the AGO of the original sequence. By considering that the

estimation of the first element of the first AGO of a sequence is equal to the first element of the

sequence, the following relation is determined: bX ð1Þ
1 ð1Þ ¼ X

ð0Þ
1 ð1Þ

Finally, in order to predict the elements of the original sequence, the inverse accumulated
generating operation should be performed. Therefore, the predicted values can be determined
as follows: bxð0Þ1 ðkÞ ¼ bxð1Þ1 ðkÞ � bxð1Þ1 ðk� 1Þ; k≥ 2;

where bxð0Þ1 ðnÞ is an estimation of the original sequence, which is simulation values,bxð0Þ1 ðnþ 1Þ;bxð0Þ1 ðnþ 2Þ; � � � are predictive values.

2.2 DVCGM (1, N) model
Traditional GM (1, N) model ignores the influence of virtual variables, which will inevitably
lead to significant errors in practical applications. Therefore, it is necessary to construct a
newmultivariable predictive model with virtual variable control, based on the traditionalGM
(1, N) model, i.e. the DVCGM (1, N) model. The modeling steps for DVCGM (1, N) can be
illustrated in Figure 2.

Definition 4. The original sequence is

X
ð0Þ
i ¼ �

x
ð0Þ
i ð1Þ; xð0Þi ð2Þ; � � � ; xð0Þi ðnÞ�:

Virtual variable sequence is

D
ð0Þ
j ¼

�
d
ð0Þ
j ð1Þ; dð0Þ

j ð2Þ; dð0Þj ðnÞ
�
; � � � ; dð0Þ

j ðnÞ ¼ 0 or 1:

X
ð1Þ
i and D

ð1Þ
j are the 1-AGO sequence, X

ð0Þ
1 is the behavior sequence of the system,

X
ð1Þ
i ði ¼ 2; � � � ;MÞ and D

ð1Þ
j ðj ¼ M þ 1; � � � ;NÞ is the driving factor sequence. Then GM

(1, N) model with dummy variable can be expressed as:

x
ð0Þ
1 ðkÞ þ az

ð1Þ
1 ðkÞ ¼

XM
i¼2

bix
ð1Þ
i ðkÞ þ

XN
j¼Mþ1

bjd
ð1Þ
j ðkÞ (4)

named DVCGM (1, N) model (dummy variables control grey model of N variables).

Z
ð1Þ
1 is the sequence of mean generation of consecutive neighbors from X

ð1Þ
1 where,

Z
ð1Þ
1 ðkÞ ¼ 0:5X

ð1Þ
1 ðk− 1Þ þ 0:5X

ð1Þ
1 ðkÞ; ðk ¼ 2; 3; . . . ; nÞ

where
PM
i¼2

bix
ð1Þ
i ðkÞ is independent quantization variable driver,

PN
j¼Mþ1

bjd
ð1Þ
j ðkÞ is the dummy

variable driver. If virtual variables are not considered or bj50, the model can be transformed
to a traditional GM (1, N) model.
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Theorem 1. Assuming

X
ð0Þ
i ;X

ð1Þ
i ;D

ð0Þ
j ðkÞ;Dð1Þ

j ðkÞ
as mentioned in Definition 4. The parameter column of the model isbb ¼ ½a; b2; � � � bN �T :
The matrix B and YN are defined as follows:

YN ¼

2666664
x
ð0Þ
1 ð2Þ
x
ð0Þ
1 ð3Þ
..
.

x
ð0Þ
1 ðnÞ

3777775;B ¼

26666664
�z

ð1Þ
1 ð2Þ X

ð1Þ
2 ð2Þ � � �X ð1Þ

M ð2Þ d
ð1Þ
Mþ1ð2Þ � � � dð1Þ

N ð2Þ
�z

ð1Þ
1 ð3Þ X

ð1Þ
2 ð3Þ � � �X ð1Þ

M ð3Þ d
ð1Þ
Mþ1ð3Þ � � � dð1Þ

N ð3Þ
..
. ..

. ..
. ..

. ..
.

�z
ð1Þ
1 ðnÞ X

ð1Þ
2 ðnÞ � � � X

ð1Þ
M ðnÞ d

ð1Þ
Mþ1ðnÞ � � � dð1Þ

N ðnÞ

37777775
Definition 5. Assuming

X
ð0Þ
i ;X

ð1Þ
i ;D

ð0Þ
j ðkÞ; D

ð1Þ
j ðkÞ

As mentioned in Definition 4, the parameter column of the model isbb ¼ ½a; b2; � � � ; bN �T :
Let Eq (5) be defined as the differential equation of DVCGM (1, N) model:

dx
ð1Þ
1

dt
þ ax

ð1Þ
1 ðtÞ ¼

XM
i¼2

bix
ð1Þ
i ðtÞ þ

XN
j¼Mþ1

bjd
ð1Þ
j ðtÞ (5)

After determining the coefficients of a and b1; b2; � � � ; bn, the differential equation of the GM
can be determined by Eq (5). The solution of the above differential equation is as follows:

x
ð1Þ
1 ðtÞ ¼ e−at

(
X

ð0Þ
1 � t

"XM
i¼2

bix
ð1Þ
i ð0Þ þ

XN
j¼Mþ1

bjd
ð1Þ
j ð0Þ

#

þ
XN
i¼2

Z "XM
i¼2

bix
ð1Þ
i ðtÞ þ

XN
j¼Mþ1

bjd
ð1Þ
j ðtÞ

#
eatdt

)
(6)

Finally, in order to predict the elements of the original sequence, the inverse accumulated
generating operation should be performed. Therefore, the predicted values can be determined
as follows: bxð0Þ1 ðkÞ ¼ bxð1Þ1 ðkÞ � bxð1Þ1 ðk� 1Þ; k≥ 2;

where bxð0Þ1 ðnÞ is an estimation of the original sequence, which is simulation values,bxð0Þ1 ðnþ 1Þ;bxð0Þ1 ðnþ 2Þ; � � � are predictive values.

2.3 Improved DVCGM (1, N) model
The classic multivariable grey prediction models, such as traditional GM (1, N) and DVCGM
(1, N) models, can reflect the influences of current driving-variables on the present system
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behavior and innately ignore the hysteresis effect of historical variables. Therefore, an
improved DVCGM (1, N) model is proposed, integrating these above prediction model.

2.3.1 Construction of the improved DVCGM (1, N) model. In this section, the hysteresis
parameter λi is innovatively introduced into the DVCGM (1, N) model to improve the
prediction accuracy. Supported by PSO algorithm, detailed process and algorithm can be
described as following:

Theorem 2. Assuming
X

ð0Þ
i ;X

ð1Þ
i ;D

ð0Þ
j ðkÞ;Dð1Þ

j ðkÞ

As mentioned in Definition 4. The parameter column of the model isbb ¼ ½a; b2; � � � ; bN �T :
The matrix B and YN are defined as follows:

YN ¼

2666664
x
ð0Þ
1 ð2Þ
x
ð0Þ
1 ð3Þ
..
.

x
ð0Þ
1 ðnÞ

3777775;

B ¼

26666666666664

�Z
ð1Þ
1 ð2Þ;

X2

j¼1

λ2−j2 x
ð1Þ
2 ðjÞ; � � �

X2

j¼1

λ2−jM x
ð1Þ
M ðjÞ;

X2

j¼1

λ2−jMþ1d
ð1Þ
Mþ1ðjÞ � � �

X2

j¼1

λ2−jN d
ð1Þ
N ðjÞ

�Z
ð1Þ
1 ð3Þ;

X3

j¼1

λ3−j2 x
ð1Þ
2 ðjÞ; � � �

X3

j¼1

λ3−jM x
ð1Þ
M ðjÞ;

X3

j¼1

λ3−jMþ1d
ð1Þ
Mþ1ðjÞ � � �

X3

j¼1

λ3−jN d
ð1Þ
N ðjÞ

..

. ..
. ..

. ..
. ..

.

�Z
ð1Þ
1 ðnÞ;

Xn

j¼1

λn−j2 x
ð1Þ
2 ðjÞ; . . .

Xn

j¼1

λn−jM x
ð1Þ
M ðjÞ;

Xn

j¼1

λn−jMþ1d
ð1Þ
Mþ1ðjÞ . . .

Xn

j¼1

λn−jN d
ð1Þ
N ðjÞ

37777777777775
The least square estimation of the parameter column satisfies the following requirements:

(1) When n 5 Nþ1, bb ¼ B−1Y ; jBj≠ 0;

(2) When n > Nþ1, bb ¼ ðBTBÞ−1BTY ;
���BTB

���≠ 0;

(3) When n < Nþ1, bb ¼ BTðBTBÞ−1Y ;
���BTB

���≠ 0;

Proof: Substitute k 5 2, 3,. . ., n into the model, you can get

x
ð1Þ
1 ð2Þ ¼ −ax

ð1Þ
1 ð2Þ þ

XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ð2Þ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þ

q ð2Þ

x
ð1Þ
1 ð3Þ ¼ −ax

ð1Þ
1 ð3Þ þ

XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ð3Þ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þ

q ð3Þ

x
ð1Þ
1 ðnÞ ¼ −ax

ð1Þ
1 ðnÞ þ

XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðnÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þ

q ðnÞ

That is, by the least square method, Y ¼ Bbb

GS
11,3

380



(1) When n5Nþ1, B has an inversematrix, the equations have a unique solution, we can

get bb ¼ B−1Y ; jBj≠ 0;

(2) When n > Nþ1, B is column full rank, the full rank decomposition of B is B 5 DC.
Then the generalized inverse matrix of B can be obtained:

Bþ ¼ CT
�
CCT

�−1�
DTD

�−1
DT ;bβ ¼ CT

�
CCT

�−1�
DTD

�−1
DTY ;

Because B is a full rank matrix, C can be taken as a unit matrix, B 5 D, sobb ¼ CT
�
CCT

�−1�
DTD

�−1
DTY ¼ �

BTB
�−1

BTY ;

(3) When n<Nþ1, B is a row full rankmatrix,D can be taken as a unit matrix,B5 C, sobb ¼ CT
�
CCT

�−1�
DTD

�−1
DTY ¼ BT

�
BTB

�−1
Y ;

Definition 6. Let Eq (7) be defined as the differential equation of improvedDVCGM (1, N)
model:

dx
ð1Þ
1 ðtÞ
dt

þ ax
ð1Þ
1 ðtÞ ¼

XM
i¼1

Z T

0

biλ
t−s
i x

ð1Þ
i ðsÞdsþ

XN
q¼Mþ1

Z Q

0

bQλ
t−s
q dð1Þ

q ðsÞds (7)

Where k 5 2, 3, n, a is the development coefficient and b1; b2; � � � ; bn are the grey input
coefficients, λi is the hysteresis parameter. PSO algorithm is used to determine the coefficients
of a, b1; b2; � � � ; bn, and λi. Then the differential equation of the GM can be determined by
Eq (7). The solution of Eq (7) is as follows:

x
ð1Þ
1 ðtÞ ¼ e−at

(
X

ð0Þ
1 � t

"XM
i¼2

bix
ð1Þ
i ð0Þ þ

XN
q¼Mþ1

bqd
ð1Þ
q ð0Þ

#

þ
XN
i¼2

Z "XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þq ðtÞ

#
eatdt

)
(8)

When the range of the driving factor sequence is small, the driver term can be viewed as a
grey constant, and then the approximate TRF sequence of the grey differential equation of
the model is

bxð1Þ1 ðkÞ ¼ 1

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þq ðtÞ

#

� e−aðk−1Þ

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þq ðtÞ

#
þ X

ð1Þ
1 e−aðk−1Þ (9)
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Finally, in order to predict the elements of the original sequence, the inverse accumulated
generating operation should be performed. The predicted values can be determined as
follows: bxð0Þ1 ðkÞ ¼ bxð1Þ1 ðkÞ � bxð1Þ1 ðk� 1Þ; k≥ 2;

where bxð0Þ1 ðnÞ is an estimation of the original sequence, which is simulation values,bxð0Þ1 ðnþ 1Þ;bxð0Þ1 ðnþ 2Þ; � � � are predictive values.
2.3.2 Estimation and optimization of hysteresis parameter in the improved DVCGM (1, N)

model. The most important part of the improved DVCGM (1, N) model is estimating
the time-lag parameter, which directly affects the accuracy of the model. However, the
time-lag parameters must be determined in advance, followed by B and Y matrix
construction and system parameters calculation through OLS. Once the system parameters
a and b are determined, we can obtain the TRF and the simulation and prediction value of
the model.

In this paper, a nonlinear optimization model is established by using the Least One
Multiplication. Then, the time-lag parameter is determined. When the range of the driving
factor sequence is small, Eq (9) is used as the TRF, λi can be solved by the following nonlinear
programming model:

min
λi

Xn

k¼2

bxð1Þ1 ðkÞ ¼ 1

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þ

q ðtÞ
#

� e−aðk−1Þ

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þ

q ðtÞ
#
þ X

ð1Þ
1 e−aðk−1Þ

(10)

s:t:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

bxð0Þ1 ðkÞ ¼ bxð1Þ1 ðkÞ � bxð1Þ1 ðk� 1Þ; k≥ 2

bxð1Þ1 ðkÞ ¼ 1

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þq ðtÞ

#

� e−aðk−1Þ

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þq ðtÞ

#
þ x

ð1Þ
1 ð1Þe−aðk−1Þ

bb ¼ ½a; b2; � � � ; bN �T

0 < λi < 1; i ¼ 2; 3; . . . ;M ;M þ 1; . . . ;N

(11)

The model takes the relationship between structural parameters as the constraint condition
and minimizes the average simulation relative error of the system characteristic variables,
which can improve accuracy to the greatest extent.

The above optimization problem can be solved by PSO (Kiran andMustafa, 2017; Mason
et al., 2018; Chen et al., 2018). According to Eq (10), a nonlinear optimization method based
on PSO algorithm is constructed to obtain the hysteresis parameter. PSO sets a certain
number of particles in feasible region to find the best location and can be used to seek
optimal values of λi. Denote λi in Eq (10) and construct the fitness function of each particle,
according to Eq (12).
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Fitnes λi ¼
Xn

k¼2

���������������

bxð1Þ1 ðkÞ ¼ 1

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þ

q ðtÞ
#

�e−aðk−1Þ

a

"XM
i¼2

Xk

j¼1

biλ
k−j
i x

ð1Þ
i ðtÞ þ

XN
q¼Mþ1

Xk

j¼1

bqλ
k−j
q dð1Þq ðtÞ

#

þX
ð1Þ
1 e−aðk−1Þ

���������������
(12)

Obviously, the average simulation relative error of the system characteristic variable
sequence varies depending on the number of lag periods. The value of lag period should be
selected to make the average simulation relative error as small as possible. Therefore, the
improved DVCGM (1, N) model can well describe the hysteresis effect between the system
characteristic variables. Once the hysteresis parameter is determined, the structural
parameters of the model are set accordingly, and the simulation and prediction results can be
obtained according to Eq (9).

2.3.3 Modeling procedure. Detailed procedure of the improved DVCGM (1, N) model is
illustrated as follows.

Step 1. Collect raw data and establish original sequence X
ð0Þ
1 , X

ð1Þ
1 is the 1-AGO sequence

from X
ð0Þ
1 , X

ð1Þ
i is the sequence of the relevant factors. Z

ð1Þ
1 is the sequence of mean

generation of consecutive neighbors from X
ð1Þ
1 . Then, determining virtual variable

sequence

D
ð0Þ
j ¼

�
d
ð0Þ
j ð1Þ; dð0Þ

j ð2Þ; � � � dð0Þj ðnÞ
�
; d

ð0Þ
j ðnÞ ¼ 0 or 1:

D
ð1Þ
j is also the sequence of the relevant factors.

Step 2. Solving delay parameters λi by PSO according (10), then constructing vector Y and
matrix B. Using the least square method, the values of the coefficients a and b1; b2; � � � ; bn
can be determined.

Step 3. After considering the lag effect, the differential equation of the grey model can be
determined by Eq (7).

Step 4. The time response function of the new model is established to generate prediction
data according to Eq (9).

3. Application
Forecasting EI can be considered as a grey problem, because EI is greatly affected by
technological progress, population factor, industrial structure and so on. These factors
influence EI through a dynamic and complicated mechanism. The uncertain impacts and
limited number of data provides a good basis for grey theory application. There are four
procedures in this part, including data collection, parameter estimation, result comparisons
and future forecasts. Three competing models, namely GM (1, N), DVCGM (1, N) and
ARIMA model, are employed to test the accuracy of the improved DVCGM (1, N) on EI
forecasting.

The threeGMs used in this paper are interrelated and are from basic to the advanced. The
GM (1, N) model is a traditional grey multivariate prediction model. On its basis, DVCGM
(1, N) model introduces dummy variables, taking into account the influence of policies and
other factors. The improved DVCGM (1, N) model introduces time-lag parameters, which
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further enriches the existing grey prediction theory by considering the hysteresis effect of
policies. The aboveGMs are used to estimate China’s EI, and the optimal model is selected by
comparing their performance, to predict China’s EI in the next five years. In addition, we use
ARIMA model as a comparison of grey methods to show that the improved DVCGM
(1, N) model is not only better than the traditional GM, but also better than the non-grey
econometric model.

3.1 Variables selection and data collection
The indicators selected in this paper are as follows. EI is the ratio of total energy consumption
to GDP. Population factor is the employed population. The ratio of the added value of
industrial production to the added value of energy consumed by the industry is used as the
substitution variable of technological progress (Yan, 2011). Industrial structure is measured
by the ratio of output value of each industry to GDP. For the consistency of the statistical
scope, we choose a time scale of 2001–2017, and all data are collected from China Statistical
Yearbook. With small sample size (17 periods’ real measurement values) and insufficient
information, this case fits well with the grey system.

First, we calculate the grey correlation between EI and population, technological progress
and industrial structure. As shown in Table 1, technological progress has the highest
correlation with EI. Therefore, we select technological progress as the driving variable, and
EI is the system behavior variable. Then, we can build GM (1, N) model for EI forecast.

As shown in Figure 3, China’s EI increased rapidly from 2001, rising sharply to a peak of
1.4542 tons standard coal per 10,000 Yuan in 2005 and declined steadily afterward. In 2017,
the EI has decreased by 62.67%, leaving only 0.5428 tons of standard coal per 10,000 Yuan.
The 11th Five-Year Plan in 2006 is a kind of watershed for Chinese EI. The government
introduced a series of strict policies of energy conservation and emission reduction, and

Relative correlation Energy intensity

Population factors 0.6126
Technological progress 0.9550
Industrial structure 0.7652
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Relative correlation
analysis

Figure 3.
Trends of energy
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and technological
progress (solid line)
of China
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China’s EI declined obviously. As a result, we need to put policy and the hysteresis effect of
policy into consideration when estimate EI of China.

3.2 Simulation of energy intensity in China
Four models are applied in the simulation of EI of China. First, we use the GM (1, N) model
mentioned in Section 2.1 to predict EI. We select technological progress as the driving
variable, EI as the system behavior variable and then establish the GM (1, N) model.
According to 2.1, the TRF is obtained as follows:

X
ð1Þ
1 ðkÞ ¼ 4:2429X

ð1Þ
2 ðkÞ3�

1� e−1:8419ðk−1Þ
�þ e−1:8419ðk−1Þ

The simulation results of GM (1, N) model are illustrated in Table 3, and the relative errors
and average relative errors can be calculated, as shown in Table 3.

Secondly, we buildDVCGM (1, N) model for EI estimate. We select technological progress
as the driving variable, EI as the system behavior variable. Energy conservation policy (P) is
introduced as a dummy variable. Before 2006, as the strict energy-saving policies had not
been implemented, P value is 0; after 2006, P value is 1. According to Section 2.2, the TRF is
obtained as follows:

X
ð1Þ
1 ðkÞ ¼ �

4:2830X
ð1Þ
2 ðkÞ � 0:0232d

ð1Þ
3 ðkÞ�3�

1� e−1:7372ðk−1Þ
�
d þ e−1:7372ðk−1Þ

The simulation results of DVCGM (1, N) model are illustrated in Table 3, and the relative
errors and average relative errors can be calculated, as shown in Table 3.

Thirdly, we use the improvedDVCGM (1, N) model to estimate EI. As discussed in Section
2.3,DVCGM (1, N) model takes consideration of the hysteresis effect of dummy variables. We
select technological progress as the driving variable, EI as the system behavior variable and
energy-saving policy as virtual variable. Different from DVCGM (1, N) model, we need to
determine the delay parameters, alongwith the structure parameters and build theTRF to get
the simulation results.

(1) Determination of time-delay parameter.

As stated by Eq (10-12), a nonlinear optimization method based on PSO algorithm is
constructed to obtain the hysteresis parameter. According to the optimization model shown
in Eq (9), the average relative percentage errors (APE) of themodel under different lag periods
is calculated in Table 2. When the hysteresis parameter is 2, the average relative percentage
errors (APE) of the model is the smallest (0.9754%). Therefore, the value of time lag is two
years. In the view of the complexity of socio-economic ecology, adaptive adjustments are
made according to the changes of policies. These energy-saving policies influence economic
operation through a certain transmission mechanism and gradually affect the EI.

(2) Determination of structural parameters.

The hysteresis parameter is substituted into the B matrix and Y matrix. According to
Theorem 2, the matrix operation of least square regression is used to obtain the structural
parameter values b1, b2. B

T5 (1.251669, 0.938994).

Lag period 0 1 2 3 4 5

APE(%) 1.1107 1.0023 0.9754 1.0667 1.0989 0.9836

Table 2.
Average percentage
errors (APEs) of the

model under different
lag periods
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(3) Calculate the simulated and predicted values.

Putting the values of the estimated structural parameter and hysteresis parameter in Eq (7-9),
we can obtain the optimal TRF as follows:

X
ð1Þ
1 ðkÞ ¼ �

4:2830X
ð1Þ
2 ðkÞ � 0:0232d

ð1Þ
3 ðkÞ�3�

1� e−1:7372ðk−1Þ
�
d þ e−1:7372ðk−1Þ

Then, the simulation results of improved DVCGM (1, N) model are illustrated in Table 3, and
the relative percentage errors (PE) and average relative percentage errors (APE) can be
calculated, as shown in Table 3.

Finally, we employ ARIMA (autoregressive composite moving average) model to test our
results from the non-grey perspective. The estimation results of ARIMAmodel are shown in
Table A1-4 in the Appendix. All the coefficients are statistically significant and the model is
well fitted (R-squared is 0.850452). The ARIMA (2,1,1) model of time series is determined as
follows:

ΔEI ¼ � 0:0311 þ 1:52ΔEIt�1 � 0:94ΔEIt�2 þ εt�0:99 εt�1

The performance of theARIMAmodel and the calculated relative errors and average relative
errors are presented in Table 3.

As illustrated in Table 3, there is great consistency between simulated values and real
values for the improved DVCGM (1, N) model. ForAPE, which is the performance prediction
index, its values of the improved DVCGM (1, N) is the smallest (1.76% in the in-sample
periods and 1.92% in the out-sample periods) among all four models.

Years
Original
data

GM (1, N) model
DVCGM (1, N)

model

Improved
DVCGM (1, N)

model ARIMA model
In-
sample

Simulation
values

PE
%

Simulation
values

PE
%

Simulation
values

PE
%

Simulation
values

PE
%

2001 1.3731 1.3731 0 1.3731 0 1.3731 0 1.3731 0
2002 1.3932 1.4108 1.26 1.40783 1.05 1.4195 1.89 1.4381 3.22
2003 1.4341 1.5118 5.42 1.50494 4.94 1.4866 3.66 1.5134 5.53
2004 1.4229 1.4697 3.29 1.45264 2.09 1.4502 1.92 1.4536 2.16
2005 1.4542 1.4955 2.84 1.48736 2.28 1.4847 2.1 1.5111 3.91
2006 1.3054 1.3319 2.03 1.34535 3.06 1.3271 1.66 1.361 4.26
2007 1.1525 1.1965 3.82 1.19042 3.29 1.1681 1.35 1.235 7.16
2008 1.0034 1.0611 5.75 1.05487 5.13 1.044 4.05 1.0605 5.69
2009 0.9629 1.0025 4.11 0.99564 3.4 0.9729 1.04 1.0488 8.92
2010 0.8732 0.9179 5.12 0.91127 4.36 0.8875 1.64 0.9616 10.1
2011 0.791 0.82 3.66 0.81457 2.98 0.804 1.64 0.8661 9.49
2012 0.7442 0.8106 8.92 0.77739 4.46 0.7518 1.02 0.7913 6.33
2013 0.7004 0.7648 9.19 0.76 8.51 0.7112 1.54 0.7575 8.15
2014 0.6612 0.678 2.54 0.6852 3.63 0.6683 1.08 0.6966 5.36

APE% 4.14 3.51 1.76 5.74

Out-
sample

Original
data

Prediction
value

PE
%

Prediction
value

PE
%

Prediction
value

PE
%

Prediction
value

PE
%

2015 0.6239 0.6577 5.41 0.64118 2.77 0.6334 1.52 0.6718 7.68
2016 0.5861 0.6076 3.67 0.61136 4.31 0.5943 1.4 0.6157 5.05
2017 0.5428 0.5676 4.57 0.56033 3.23 0.5582 2.83 0.5677 4.59

APE% 4.55 3.44 1.92 5.78

Table 3.
Simulation of energy
intensity in China by
GM (1, N), DVCGM
(1, N), the Improved
DVCGM (1, N) and
ARIMA model (Unit:
tons of standard coal
per 10,000 Yuan)
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3.3 Comparison and discussion of the results
As shown in Figure 4a, the overall trends of the GM (1, N), DVCGM (1, N) and improved
DVCGM (1, N)model andARIMAmodel complywith the true curve to some extent. However,
the performance evaluation is distinct (Figure 4b). The APE value of the improved DVCGM
(1, N) model is the smallest with the minimum fluctuation, demonstrating the efficacy and
reliability of the model. It also suggests that the improvedDVCGM (1, N) model is better than
the traditional grey multivariable models. The ARIMAmodel has the largest values of APE
among these four competing models. GM (1, N) model obtains the second largest values of
APE, suggesting DVCGM (1, N) is the suboptimal choice.

In view of the hysteresis effect of energy-saving policies, the improved DVCGM (1, N)
model has amuch lower error than the other threemodels. Therefore, we choose the improved
DVCGM (1, N) model as the best model for predicting EI.

3.4 Forecasting the future energy intensity from 2018 to 2022
Based on the improved DVCGM (1, N) model, we can forecast the output value of China’s EI
from 2018 to 2022 using data of technological progress. However, the data of technological
progress from 2018 to 2022 is unknown and needs to be predicted in advance. The one-step
rolling GM (1, 1) model is considered for the data prediction.

We used the GM (1, 1) model for in-sample simulation and out-of-sample prediction of
technological progress. The results (Table 4) show that the in-sample simulation error is
2.97%, and the out-of-sample hind cast error is 2.11%, which indicates that the GM (1, 1)
model gives satisfying results and can be used to predict technological progress from 2018
to 2022.

It is also noted that energy conservation policy (P) is introduced as a dummy variable.
Before 2020, P value is 0; after 2020, P value is 1. It is because that the 13th Five-Year Plan is
from 2016 to 2020, new performance target and new policies for the next stage are
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formulating and will be effective after 2020. Therefore, the data we need to substitute into the
improved DVCGM (1, N) model is shown in Table 5.

The predicted results of China’s EI are shown in Table 6. In addition, we also draw a line
graph to make the results more iconic in Figure 5.

As illustrated in Figure 5, there is a downward trend of the EI in the next five years. By
2020, the EI is expected to decrease by 20%ormore than it was in 2016. That is to say, during
the 13th Five-Year Plan period (2016–2020), EI will drop by more than 15%, meeting the
country’s energy performance target. Therefore, government policies have a profound
influence on EI. When formulating energy conservation and emission reduction policies, we
should consider the hysteresis effect of the policies and make adjustments accordingly to
achieve the goal.

Years
Technical progress

Original value Simulated value Error

2001 0.3464 0.3464 0
2002 0.3465 0.385443 0.112389
2003 0.3616 0.376489 0.041174
2004 0.3821 0.367743 0.037575
2005 0.384 0.3592 0.064584
2006 0.3724 0.350855 0.057854
2007 0.3563 0.342705 0.038157
2008 0.3367 0.334743 0.005812
2009 0.3297 0.326967 0.00829
2010 0.3191 0.319371 0.00085
2011 0.3086 0.311952 0.010862
2012 0.3075 0.304705 0.009089
2013 0.2958 0.297627 0.006175
2014 0.2843 0.290713 0.022555
APE 0.029669
2015 0.2750 0.283959 0.032578
2016 0.2769 0.277362 0.00167
2017 0.2633 0.270919 0.028937
APE 0.021062

Years Technical progress Energy conservation policy

2018 0.26462549 0
2019 0.25847804 0
2020 0.25247341 1
2021 0.24660827 1
2022 0.24087938 1

Years 2018 2019 2020 2021 2022

Energy intensity 0.5245 0.4893 0.4674 0.4358 0.4258

Table 4.
Simulation results of
technical progress

Table 5.
Prediction results of
technological progress

Table 6.
Predicted value of
China’s energy
intensity by using the
improved DVCGM
(1, N) with one-step
rolling mechanism
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4. Conclusions
Over the past 20 years, China is gradually shifting from a resource-intensive and energy-
driven economy to a more sustained economy. EI in China has fallen almost continuously
while China focuses on the industrial upgrading and promoting transformation of the
economic structure. Energy-saving policies and regulations are introduced to help China
reach its energy performance target. However, few studies have been carried out to consider
the hysteresis effects of policies on the estimation of EI. Therefore, to address such a
challenge problem, an improved grey multivariable model is designed to forecast China’s EI
considering the hysteresis effect of government policies. To further improve its forecasting
capability, a nonlinear optimization method based on PSO algorithm is constructed to
calculate the hysteresis parameter. In addition, three conventional models, namely GM (1, N),
DVCGM (1, N) andARIMAmodels, are applied to test the accuracy of this improvedDVCGM
(1, N) model. The empirical results demonstrate that the proposed model considering the
hysteresis effects of energy conservation policies performs best and matches well with the
actual observations. Accordingly, this proposed model is used to forecast EI value from 2018
to 2022. The main conclusions are as follows:

(1) The improved DVCGM (1, N) model can solve the modeling problem of small sample
systems with time-delay causality. A nonlinear optimization method based on PSO
algorithm is constructed to calculate the hysteresis parameter. It overcomes the
defects of traditional GMs and econometric models.

(2) GM (1, N), DVCGM (1, N) and ARIMA model are taken as comparative models. The
accuracy of improved DVCGM (1, N) model was tested by the average relative
percentage errors. The results show that the ImprovedDVCGM (1, N) model notes the
hysteresis effect of government policies and significantly improves the prediction
accuracy of China’s EI than the other threemodels. As suggested byAPEs, the overall
fitting in descending order is improved DVCGM (1, N) model, DVCGM (1, N), GM
(1, N) and ARIMA model.

(3) China’s EI is greatly influenced by technological progress and is much of policy-
driven. When formulating energy conservation and emission reduction policies, we
should fully consider the hysteresis effect of the policies, so as to make adjustment of
the relative policies and better achieve the national energy performance target.

A few caveats are appropriate. It is an interesting further path to work out the hysteresis
parameter directly from the nonlinear programming model. Besides, the sustainability of the
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hysteresis effect of policy is worth considering. Furthermore, population factors and
industrial structure also have good correlation with EI. These will be investigated in our
further studies.
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Appendix

Null hypothesis: DEI has a unit root
Exogenous: constant, linear trend
Lag length: 2 (automatic - based on SIC, maxlag 5 2)

t-statistic Prob.*

AuGMented Dickey–Fuller test statistic �5.277473 0.0102
Test critical values 1% level �5.295384

5% level �4.008157
10% level �3.460791

Null hypothesis: EI has a unit root
Exogenous: constant
Lag length: 1 (automatic - based on SIC, maxlag 5 1)

t-statistic Prob.*

AuGMented Dickey–Fuller test statistic �2.587646 0.1293
Test critical values 1% level �4.420595

5% level �3.259808
10% level �2.771129

Autocorrelation Partial correlation AC PAC Q-stat Prob

. j***** j . j***** j 1 0.714 0.714 8.2763 0.004

. j* . j *****j . j 2 0.195 �0.641 8.9492 0.011

. **j . j . j . j 3 �0.219 0.035 9.8859 0.020

.***j . j . j . j 4 �0.366 0.010 12.796 0.012

. **j . j . *j . j 5 �0.297 �0.066 14.940 0.011

. *j . j . j . j 6 �0.124 0.030 15.367 0.018

. j . j . **j . j 7 �0.039 �0.267 15.417 0.031

. j . j . j* . j 8 �0.024 0.139 15.439 0.051

. *j . j . **j . j 9 �0.087 �0.284 15.805 0.071

. *j . j . j* . j 10 �0.136 0.079 17.004 0.074

. *j . j . j . j 11 �0.100 0.033 17.982 0.082

. j . j . *j . j 12 �0.017 �0.188 18.037 0.115

Table A2.
Unit root test results of
DEI of ARIMA model

Table A1.
Unit root test results of
EI of ARIMA model

Table A3.
The autocorrelation
and partial correlation
of ARIMA model
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Variable Coefficient Std. Error t-statistic Prob

C �0.031125 0.007696 �4.044042 0.0037
AR(1) 1.519400 0.137896 11.01843 0.0000
AR(2) �0.936168 0.059890 �15.63139 0.0000
MA(1) �1.000000 39728.31 �2.52E-05 1.0000
SIGMASQ 0.000442 0.403940 0.001093 0.9992

R-squared 0.850452 Mean dependent var �0.018404
Adjusted R-squared 0.775678 S.D. dependent var 0.056562
S.E. of regression 0.026789 Akaike info criterion �3.664240
Sum squared resid 0.005741 Schwarz criterion �3.446952
Log likelihood 28.81756 Hannan-Quinn criterion �3.708902
F-statistic 11.37363 Durbin–Watson stat 1.064574
Prob(F-statistic) 0.002202

Table A4.
Estimation of
ARIMA model
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