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Abstract

Purpose –The present study aims to construct ensemblemachine learning (EML) algorithms for groundwater
potentialitymapping (GPM) in theTeesta River basin of Bangladesh, including random forest (RF) and random
subspace (RSS).
Design/methodology/approach – The RF and RSS models have been implemented for integrating 14
selected groundwater condition parametres with groundwater inventories for generating GPMs. The GPM
were then validated using the empirical and bionormal receiver operating characteristics (ROC) curve.
Findings –The very high (831–1200 km2) and high groundwater potential areas (521–680 km2) were predicted
using EML algorithms. The RSS (AUC-0.892) model outperformed RF model based on ROC’s area under
curve (AUC).
Originality/value – Two new EML models have been constructed for GPM. These findings will aid in
proposing sustainable water resource management plans.
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1. Introduction
Groundwater is the world’s largest source of freshwater (i.e. one-third of worldwide
freshwater consumption) but there is a shortage of data at a micro-spatial level on the
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potential groundwater source (Ferozur et al., 2019; Adham et al., 2010). Groundwater use is
continuously increasing. These increasing demands usually result in overexploitation,
putting a pressure on the limited supply of freshwater (Jahan et al., 2019). Furthermore,
groundwater problems haveworsened, particularly in the tropical and subtropical zones, as a
result of unregulated irrigation practices, high population density and climate change.

Groundwater potentiality has been investigated using physical, heuristic and
mathematical techniques (Namous et al., 2021). Physical techniques evaluate
groundwater potential by examining topography and geology (Mallick et al., 2021a).
Heuristic-based techniques are very professional and produce reasonable accuracy
(Mallick et al., 2021a). Evidence-based models such as statistical index (SI) (Pande et al.,
2020), logistic regression (LR) (Chen et al., 2020; Ozdemir, 2011; Park et al., 2017), evidential
belief function (EBF) (Mogaji et al., 2016; Nampak et al., 2014), probability-frequency ratio
(FR) (Arshad et al., 2020; Razandi et al., 2015), certainty factors (CF) (Razandi et al., 2015;
Ahmadi et al., 2020; Zhao and Chen, 2020), weight of evidence (WoE) (Das et al., 2021;
Hembram et al., 2019), index of entropy (IoE) (Al-Abadi and Shahid, 2015; Rahmati et al.,
2016) and certainty fact have been used to model groundwater potentiality. Focusing on
current groundwater availability regions and related variables makes these methods
objective and measurable. However, standard statistical techniques cannot anticipate the
dynamic and non-linear interactions between groundwater and the conditioning factors
(Mallick et al., 2021b). Since no one technique or methodology works for all situations,
machine learning is considered.

Machine learning has been utilised to predict groundwater potentiality because it can
analyse the dynamic relationship between groundwater potentiality and influencing factors
(Mallick et al., 2021b). Several methods have been used to assess groundwater potentiality,
including artificial neural networks (Lee et al., 2018; Pal et al., 2020), neuro-fuzzy (Termeh
et al., 2019; Khosravi et al., 2018), decision trees (Duan et al., 2016; Choubin et al., 2020) and
support vector machines (Lee et al., 2018; Naghibi et al., 2018). But until recently, groundwater
experts couldn’t agree on a model for evaluating groundwater potentiality (Mallick et al.,
2021a). Thus, ensemble techniques have lately acquired favour in geohazard susceptibility
and potentiality mapping (Mallick et al., 2021b).

Ensemble modelling combines two or more machine learning methods to improve forecast
accuracy (Talukdar et al., 2020; Islam et al., 2021a, b). Ensemble modelling may improve an
individualmodel’sweaknesses (Talukdar et al., 2021a, b). Researching susceptibility, sensitivity,
hazards, potentiality and other issues using multi-model ensembles is a newer trend (Talukdar
and Pal, 2020; Mahato et al., 2021). For example, the present research utilised RF and RSS to
enhance the model’s robustness. The ensemble prediction technique has not been utilised for
groundwater potential zone mapping in Bangladesh’s northern Teesta sub-catchment.

2. Methods and materials
2.1 Study area
The Teesta sub-catchment, which covers 2284 km2 and includes five major districts in
Bangladesh’s northern region, namely Lalmanirhat, Kurigram, Rangpur, Nilphamary and
Gaibandha, is the study’s research area (Figure 1). This basin is located in Bangladesh
between the latitudes of 2583000200N and 2681803700N and the longitudes of 8885205800E and
8984503400E. Bangladesh’s largest geomorphic unit is the floodplain, and the drainage basin is
made up of several minor rivers that run at elevations ranging from 5 to 110 metres. When
floods occur, the river’s general slope ranges from 0.47 to 0.55 m/km, suggesting a
comparatively flat terrain (Rahman et al., 2011). Since the river basin’s morphological
depression is narrow and situated in a dormant stream canyon, the river basin’s pathways are
long and morphologically diverse. With a dense river network and six rivers, including the
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Naotora, Buri Teesta, Ghagot, Old Brahmaputra, Jamuna and Dharla, the research area has
complex hydrological attributes.

The climate in this basin is sub-tropical monsoonal, with two distinct seasons: monsoon
(June to September) and dry season (October to December) (October to May). The average
annual precipitation in this basin is over 1900mm (Akter et al., 2019), with over 80%of overall
annual precipitation taking place during the monsoon season.

2.2 Materials
The groundwater potentiality (GWP) models for this study were prepared using 12
groundwater conditioning parametres. These are land use land cover (LULC), rainfall,
distance to road, elevation, slope, topographic roughness index (TRI), stream power index
(SPI), sediment transport index (STI), curvature, soil types, topographic wetness index (TWI),
aspect. For LULC map, Landsat 8 Operational Land Imager (OLI) image from the United
States Geological Survey’s (USGS) website (Path/row: 138/42, spatial resolution: 30 m,
date:19/03/2019) has been utilised. The advanced spaceborne thermal emission and reflection
radiometer (ASTER) global digital elevation model (GDEM) (Version 2, spatial resolution:
30 metre) was utilised to extract topographical and hydrological variables. The rainfall data
were given by the Bangladesh Meteorological Department (BMD), Dhaka, Bangladesh. We
used a soil taxonomy map from the United States Department of Agriculture’s Natural
Resources Conservation Service (USDA) (NRCS).

2.3 Groundwater potentiality inventory
ForGWPmapping, several researchers have utilised the positions of springs, wells and quant
for inventory. Well points were taken into account for GWP in this study. The study region’s
inventory graph includes 220 well points collected from various resources and detailed site
inspection. First, non-groundwater data similar to the groundwater data utilised for GWP
modelling must be prepared. The selection was made on the basis of the field survey, with
equivalent numbers of non-groundwater data (220 points). By arbitrary separation, all
groundwater and non-groundwater data have been divided into 80 (352 points):20 (88 points)
proportion as calibrating and test datasets (Figure 1). Model calibration is done with

Figure 1.
The location of the
study area with the

training and validation
flood points
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groundwater and non-groundwater training data, while model validation is done with
groundwater and non-groundwater testing data (Mallick et al., 2021a). Similarly, inventory
maps for other areas have been developed.

2.4 Methods for preparing groundwater potentiality conditioning factors
Since it requires multiple variables related to topography and hydrology in geospatial layout,
the architecture of the spatial groundwater potentiality model is typically very complex and
systematic. As a result, identifying variables that affect groundwater potentiality is critical,
and scientifically selected criteria can confirm the accuracy of groundwater potentiality
modelling charts. All the selected parametres were translated into 30 m spatial resolution
using resampling technique.

Topographic influences are critical for GWP modelling because they affect the
hydrological characteristics of the research region both directly and indirectly (Panahi et al.,
2020). At first, ASTER GDEM data was used to generate digital elevation model to extract
slope, curvature, aspect, TWI, SPI, STI and TRI using ArcGIS 10.2 software (Figure 2).

Soil characteristics are one of the most important determining variables in the rainfall-
runoff process (Nguyen et al., 2020). While Fl€ugel (1995) reported that other factors such as
local weather patterns and erosion processes influence rainfall-runoff generation, soil
properties directly govern water penetration, which influences rainfall-runoff generation.
Groundwater events are more likely to occur if the degree of penetration is high. The study
area has 12 groups of soil as per USDA soil taxonomy (Figure 2j).

LULC has an effect on surface runoff including a significant impact on the occurrence of
groundwater potentiality (Prasad et al., 2020), since the LULC has full control over the
generation and penetration of surface runoff. Groundwater potentiality is very less in built-up
areas because these zones prevent water from penetrating and producing surface water. In
comparison, the woodland region encourages water to infiltrate, resulting in less
groundwater potentiality (Mallick et al., 2021a). When comparing hydrological reactions at
different temporal scales, the relationship between groundwater potentiality occurrences and
plant density is inverse (Tolche, 2021). The artificial neural network (ANW) model was used
in Environment for Visualizing Images (ENVI) software (version 5.3) to create a LULC map.
Bare ground, forest, sand bar, built-up field, agricultural land and water body were divided
into six groups on the LULC map (Figure 2).

2.5 Method for groundwater potentiality modelling
2.5.1 Random forest. RF is a classification and regression approach that uses an ensemble of
binary decision trees that have been trained individually (Golkarian et al., 2018). The basic
strategy employed by RF for classification issues is to train each decision tree individually
with the ultimate conclusion calculated by taking into consideration the findings acquired by
each decision tree (Sameen et al., 2019).

Without needing to go through a pruning procedure, RFmodels can generalise and reduce
the danger of overfitting. The training entails producing a number of distinct bootstrap
samples from the original dataset, with one-third left out to function as test cases and
estimating an unbiased test error, referred to as the out-of-bag-error, which reflects the RF
model’s prediction performance based on these test cases (Breiman, 2001).

2.5.2 Random subspace. RSS was proposed in 1988 as a way to improve the accuracy of
weak classifications and the performance of individual classifications. RSS (Ho, 1998;
Skurichina and Duin, 2002) is a popular method of random sampling in which the original
character varies at random. RSS groups the characteristic series of each sub-classification
creation using a majority vote after creating numerous subspaces with tiny dimensions
(Skurichina and Duin, 2002; Kuncheva and Plumpton, 2010). RSS has been utilised in a
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variety of disciplines, including economics (Wang and Ma, 2011) and medical (Bertoni et al.,
2005) but very seldom in groundwater potential assessment. The optimization of model’s
parameters has been presented in Table 1.

Figure 2.
Data layers for
groundwater
potentiality

conditioning factors
such as (1) elevation, (2)
curvature, (3) TRI and
(4) aspect, (5) slope, (6)
TWI, (7) SPI, (8) STI, (9)
rainfall (10) soil types,

(11) LULC and (12)
distance to river
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2.6 Validation of the models
In the ROC, on the horizontal axis (true positive or 1-specificity), the proportion of pixels
properly predicted by the presence or absence of groundwater potential is shown, while the
proportion of pixels erroneously predicted is represented on the vertical axis (false positive or
sensitivity) (Mallick et al., 2021a). The AUC is the area beneath this curve, and the model with
the greatest AUC has the best relative performance (Talukdar et al., 2021a, b). Random
prediction for amodel is shown byAUC values of 0.5 (Talukdar et al., 2021a). TheAUC values
vary from 0 to 1, with 0 being the lowest and 1 being the highest. AUCvalues those are greater
than 0.7 reflect a model’s prediction effectiveness (Nguyen et al., 2020).

3. Results
3.1 Description of the parametres
Several conditioning variables can impact a region’s groundwater potentiality (Mukherjee
et al., 2021). In this study, the affecting parametres were LULC, distance to river, height, slope,
topographic wetness index, stream power index, sediment transport index, curvature,
topographic roughness index, curvature and aspect. Low-lying regions, particularly
depressed lands in the flood plain region, maintain a high degree of surface moisture and
replenish the groundwater aquifer as a result of persistent ponding. The altitudes of the
research area varied from 18 to 69 metres (Figure 2). The capacity for recharging water is
greatest when the curvature is a concave surface, followed by plain surfaces (Nguyen et al.,
2020). Curvature map, which was produced by using the digital elevation model (DEM)
ranged from 0.32–0.82 (Figure 2a). The DEM was used to build a curvature map that ranged
from 0.32–0.82 (Figure 2b). Also, a flat or moderate slope will help to slow down the flow of
water and increase the groundwater recharge (Kumar et al., 2019). In this study, the slopes
utilised varied from 0 to 5.75 (Figure 2d). TRI examined the impact of the underlying surface’s
conflict on the water flow (Straatsma and Baptist, 2008). The Teesta river was located at the
lowest TRI due to the steep hills around the river, generating fast water flow. Lower TRI
values imply a larger possibility for groundwater (Chen et al., 2020).

In this analysis, the highest TRI value was 27 (Figure 2). A high TWI also ensures
adequate groundwater recharge. The high TWI values are strongly correlated with
groundwater potentiality. Figure 3 shows TWI values ranging from �1.54 to �7.72.
Furthermore, since higher SPI and STI values mean a higher water level, regions with higher
SPI and STI values have a greater chance of experiencing groundwater (Bui et al., 2019). The
highest STI value in this study was 140.64 (See Figure 2). LULC is important in modelling
groundwater potential zone. Maps showing vegetated land turning to become barren land
result in increased runoff, lower infiltration and thereby directly impacting the groundwater
(Pal et al., 2020). LULC was divided into six groups in this study, including vegetation, bare
land, built up, sand bar, agricultural land andwater body (Figure 2). In this place, the greatest
distance from the river was 1503 metres, as seen in Figure 2. Soil data played an important
role in accounting for excess precipitation and infiltration (Johnson et al., 2000). Water,
usterts, aquults, humults, udults, ustults, aqualfs, ustalfs, ochrepts, aquepts, aquents and
psamments were amongst the 12 soil types discovered in this study (Figure 2). The sum of

Model
name Description of parametres

RF Batch size-100, seed-6, number of iteration-200, max depth-3, calc out of bag-TRUE and compute
attribute importance-TRUE

RSS Classifier-RF, max depth- 3, minimum number-2, minimum proportion of the variance-0.001,
executions slots-2, seed-5, iteration- 100 and subspace size-0.5

Table 1.
The parametres of the
machine learning
algorithm used for
groundwater
potentiality modelling
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rainfall has a major impact in determining the potentiality of groundwater in an area, as the
distribution of rainfall strongly controls the recharge volume of a basin (Figure 2).

3.2 Groundwater potentiality modelling and validation
Figure 3, represents the groundwater potentiality models as constructed using advance
machine learning algorithms, such as, RF and RSS. As shown in Figure 3, the potential zones
of groundwater were divided into five categories: very high, high, moderate, low and very
low. The potential groundwater zone runs in a northwest–southeast direction, parallel to the
drainage direction of the catchment. The south and southeast are dominated by zones with
high groundwater potential, whereas the north northwest is dominated by areas with low
groundwater potential zones.

About 2.26 and 36.69% areas to the total basin area are found to have “very high” and
“high” potentiality for groundwater, respectively, in case of RSS model (Table 2). While the
RFmodels identified around 30% of the overall basin area as high potential for groundwater.
In general, all of the models defined the river catchment area as having a lot of potential for
underground water harvesting. However, since there are variations in the size of the region, it
is critical to explain the best representative model.

Two different models were used to integrate and define groundwater potential zones in
this study. The region ROC curve is used to show how accurate the model is (AUC). The AUC
and considerable level of the ROC curve were used to test the evaluation of these models. The
AUC calculated using ROC specifically specified the acceptability of all models, as it was
greater than 0.8 in all cases (Figure 4). The AUC indicates how accurate the model’s output

GWP zones
Area (km2)

Very high High Moderate Low Very low

RF 1102.21 584.87 361.61 507.79 1103.01
RSS 1023.99 546.11 592.62 722.03 800.01

Figure 3.
Groundwater

potentiality models
using (1) RSS and

(2) RF

Table 2.
Computation of area

coverage under
different GWP zones
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can be forecasted. The greater the AUC, the more accurate the model’s output can be
predicted. The findings of these four humanmodels were statistically important in this study
(significant level, 0.5). The RSS (0.89), RepTree (0.898) and M5P (0.89) models had the best
results in the test.

4. Discussions
Since machine learning approaches demonstrate potential when working with a variety of
geographic data, machine learning modelling of environmental problems has grown in
popularity (Panahi et al., 2020; Prasad et al., 2020). As a result, machine learningmodelling can
successfully address the problem of identifying groundwater potential zones over large-scale
regions, which frequently lack reliable and long-term geotechnical and hydrogeological data
for the application of physically-based and/or numerical models (Pal et al., 2020; Mallick et al.,
2021a; Sameen et al., 2019). Nevertheless, the versatility of various machine learning methods
must be thoroughly explored through their implementation in various regions with various
geo-environmental settings in order to identify the best model with the highest precision and
the least sensitivity to noisy input data (Choubin et al., 2019; Naghibi et al., 2018).

Robust techniques for obtaining very accurate results may be used to propose long-term
groundwater management. The goal of this study is to create an EML approach for
groundwater potential mapping in Bangladesh’s Teesta river basin. RF andRSSmodels were
used to integrate 14 groundwater condition factors with groundwater inventory for GPM
production. Based on the ROC AUC, the RSS model (AUC-0.892) outperformed the RF model
(AUC). According to the RSS model, about 1024 and 546 km2 of the overall basin area have
“very high” and “high” groundwater potentiality, respectively.

Although the research has mostly focussed on the usefulness of ensemble approaches,
these techniques have demonstrated varying levels of success for various issues in various
fields. For example, Nguyen et al. (2020) found that RSS outperformed bagging and dagging
approaches for predicting groundwater potentiality, whereasMallick et al. (2021a) found that
the RSS model outperformed rotation forest and bagging for predicting groundwater
potential. Using ensemble models to forecast floods, different outcomes have been reported
(Mahato et al., 2021; Saha et al., 2021).

Figure 4.
Validation of
groundwater
potentiality models
using ROC curve
(1) RSS and (2) RF

FEBE
2,1

50



5. Conclusion
The current research delves into the evolution of EML algorithms for estimating
groundwater potentiality. According to the two ensemble models, the very high
groundwater potential zone spans an area of 830–21200 km2. The ROC curve was used to
assess the groundwater potential models. The best representation model for groundwater
potentiality modelling was RSS (AUC5 0.892), followed by RF (AUC: 0.86). Distance to river,
slope, curvature, elevation, LULC and SPI can be considered as the most dominant and
sensitive parametres for groundwater potentiality modelling. Groundwater depletion
threatens the survival of natural surface water bodies, agriculture, natural resources and
livelihood.

In the case of groundwater potentiality models, RSS model outperformed RF model. This
research further proposes that a few other hydrogeological and meteorological variables can
be added to themodels to increase the accuracy of the outcome. Owing to damming across the
river and other anthropogenic problems, the Teesta river basin is notorious for its water
shortage. Such findings could aid in the development of long-term water harvesting and
cropping strategies. Rapid reclamation of water sources should be stopped at all times, as
water bodies have been identified as a good conditioning factor for groundwater potentiality.
Land cover and canopy density are also high conditioning influences, according to this report.
However, forest loss and destruction are undeniable facts. As a result, forest cover
preservation will aid groundwater recharge. Study is needed for scientific assessment of
groundwater at various potential zones in order to get a more precise recommendation on
how much water can be harvested from each potential zone.
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