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Abstract

Purpose – This study aims to quantify and analyse the dynamics of land use and land cover (LULC) changes
over three decades in the rapidly urbanizing city of Abha, Saudi Arabia, and to assess urban growth using
Morphological Spatial Pattern Analysis (MSPA).
Design/methodology/approach – Using the Support Vector Machine (SVM) classification in Google Earth
Engine, changes in land use in Abha between 1990 and 2020 are accurately assessed. This method leverages
cloud computing to enhance the efficiency and accuracy of big data analysis. Additionally, MSPA was
employed in Google Colab to analyse urban growth patterns.
Findings –The study demonstrates significant expansion of urban areas in Abha, growing from 62.46 km2 in
1990 to 271.45 km2 in 2020, while aquatic habitats decreased from 1.36 km2 to 0.52 km2. MSPA revealed a
notable increase in urban core areas from 41.66 km2 in 2001 to 194.97 km2 in 2021, showcasing the nuanced
dynamics of urban sprawl and densification.
Originality/value – The novelty of this study lies in its integrated approach, combining LULC and MSPA
analyses within a cloud computing framework to capture the dynamics of city and environment. The insights
from this study are poised to influence policy and planning decisions, particularly in fostering sustainable
urban environments that accommodate growth while preserving natural habitats. This approach is crucial for
devising strategies that can adapt to and mitigate the environmental impacts of urban expansion.
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1. Introduction
Urbanisation, a defining phenomenon of the 21st century, is having a profound impact on
landscapes, economies and societies worldwide (Li et al., 2021). The United Nations reports
that urban areas will absorb the growth of theworld’s population. By 2050, almost 68%of the
world’s population is expected to live in urban areas (United Nations, Department of
Economic and Social Affairs, Population Division, 2018). This rapid expansion of cities,
particularly in developing countries, brings with it significant challenges, including
environmental degradation, loss of arable land and increased pressure on infrastructure
and services (Liu et al., 2021; Zhang et al., 2022; Khan et al., 2021; Sarker et al., 2021). In Saudi
Arabia, the rate of urbanisation is emblematic of this global trend, with cities such as Riyadh
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and Jeddah experiencing rapid growth (Alharbi, 2018). The Kingdom’s urban population
increased from 86% in 2010 to over 83% in 2020, reflecting a significant urban
transformation (AlQadhi et al., 2021; Mallick et al., 2022).

Quantifying urban growth is not just a statistical exercise, but a critical component of
effective urban planning and the promotion of sustainable development (Clifton et al., 2008).
As cities expand and evolve, understanding the nuances of land use and land cover change
(LULC) is essential (Azizi et al., 2022). These changes, indicative of urban expansion,
environmental change and anthropogenic impacts, require careful and dynamic analysis to
ensure the resilience and sustainability of urban environments (Fang et al., 2022; Krivoguz,
2024). Conventional methods of LULC analysis, such as manual interpretation of satellite
imagery or simple automatic classification techniques, often lack the precision and depth
required to capture the complex and multi-layered nature of urban growth (Talukdar et al.,
2020). They struggle to accurately represent the rapid and often non-linear changes in the
urban environment, which can lead to oversimplifications when assessing urban expansion
and its environmental and socio-economic consequences (Versluis and Rogan, 2010). This
inadequacy stems from their limited ability to process the vast and diverse datasets
generated by modern remote sensing technologies (Talukdar et al., 2021). This leads to a gap
between the scale of urban change and the analytical capacity of these traditional methods.

In response to these limitations, Morphological Spatial Pattern Analysis (MSPA) has
emerged as a powerful analytical tool in the field of urban research (Lian and Feng, 2022;
Zhang et al., 2023). MSPA goes beyond the capabilities of traditional LULC analysis by
providing a detailed and structured approach to deciphering the spatial patterns of urban
growth (Wang andBanzhaf, 2018). It provides a granular examination of the urban landscape
and categorises the land into different morphological elements such as core areas, edges,
bridges, bifurcations, loops and isolated patches (Kaminski et al., 2021; Qiao et al., 2023).
Understanding the geometry and configuration of urban spaces is crucial, enabling a more
thorough analysis of urban sprawl, fragmentation, and densification processes, as noted by
Reis et al. (2016). MSPA identifies core areas as the most consolidated and stable urban zones,
typically characterized by high building density and scarce green spaces (Zhang et al., 2024).
Conversely, peripheral areas act as transition zoneswhere urban development intersects with
natural or semi-natural landscapes, making them essential for studying the urban-rural
interface and the spread of urbanization into natural habitats (Liu et al., 2024a, b). These
transition zones, as outlined by MSPA, reveal the dynamics of urban change by displaying
areas of new development, the potential for urban expansion, and spaces susceptible to
urbanization pressures (Li et al., 2024). MSPA’s capability to dissect urban landscapes into
these distinct components allows urban planners and researchers to gauge urbanization
intensity, monitor urban sprawl progression, and pinpoint areas of significant ecological
value or vulnerability (Jiang et al., 2024). This intricate classification aids in evaluating
current urban forms and projecting future urbanization patterns, thereby enhancing
strategic planning and decision-making processes (Ding et al., 2024). MSPA’s insights into the
spatial organization and morphological changes of urban areas make it a vital tool in
pursuing sustainable urbanmanagement and crafting a balance between development needs
and environmental protection, as Bosch et al. (2019) suggest. The advent of cloud computing
has revolutionised the field of remote sensing and spatial analysis, offering unprecedented
opportunities for managing and analysing large data sets (Amani et al., 2020). Cloud-based
platforms such as Google Earth Engine have democratised access to vast stores of satellite
imagery and computational resources, enabling researchers and planners to conduct detailed
LULC analysis with greater efficiency and accuracy (Lin et al., 2013; Parente et al., 2019). This
technological shift has facilitated the integration of MSPA into cloud computing
environments and improved the ability to monitor and analyse urban growth on a global
scale (Canedoli et al., 2018).
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Despite significant advancements in urban research, notable gaps persist, particularly in the
integration of comprehensive Land Use and Land Cover (LULC) analysis with Morphological
Spatial PatternAnalysis (MSPA)within the realmof cloud computing to tackle the complexities
of urban growth dynamics. This is especially relevant for rapidly urbanizing cities in the
Middle East, such asAbha, Saudi Arabia, where there is a limited understanding of urban form
evolution. Research is also scant on the socio-economic and environmental repercussions of
urbanization in these areas, characterized by a distinctive interplay between natural habitats
and urban expansion. This study aims to bridge these research gaps by employing Support
VectorMachine (SVM) classification within the Google Earth Engine to analyse LULC changes
in Abha City over a 30-year period, utilizing cloud computing to enhance data processing and
analytical efficiency. Furthermore, the study will implement MSPA in Google Colab to
quantitatively and qualitatively assess urban growth and morphological transformations,
thereby providing a holistic view of the urbanization process. The novelty of this research lies
in its methodological integration, combining advanced LULC classification techniques with
MSPA to furnish a nuanced and dynamic understanding of urban and environmental
transformations. This innovative approach contributes significantly to the scholarly discourse
and aligns with the strategic goals of Saudi Vision 2030, offering practical insights for
sustainable urban planning and environmental management in the region.

2. Materials and methods
2.1 Study area
Abha andKhamisMushait, situated in Saudi Arabia’s Asir province, were chosen as the focal
points for this study (Figure 1). These urban centres, nestled in highland areas, are renowned
for their rich biodiversity, representing the Asir region and the Kingdom of Saudi Arabia’s
most varied ecological zones, making them prominent tourist attractions. The predominant
vegetation in the locale includesA. gerrardii, Acacia origena, and J. procera trees, covering an
expanse of 1,291 square kilometres (as shown in Figure 1). Geographically, these cities are
positioned between 1889033.12600N to 18830056.56600N latitudes and 42823052.47700E to
42851042.83200E longitudes, with the elevation varying from 1,564 to 2,736 metres and an
average elevation of 2,102 metres above sea level. The region’s geology is characterized by
sedimentary soils, encompassing soft clay and compact silt, and presents a geographically
diverse terrain, as noted by the Saudi Geological Society. This area is part of theAfromontane
zone, known for its cool, semi-arid climate. Historical weather data from the past 55 years
(1965–2019) indicates an average annual rainfall of 245 mm, primarily occurring from
February to June. Temperature records show average lows and highs of 9.4 8C and 30.8 8C,
respectively. Additionally, the region is prone to intense rainfall, leading to flash floods in
several rural areas during the winter season.

2.2 Materials
Landsat 4–5 Thematic Mapper and Landsat 8 Operational Land Image (with a spatial
resolution of 30 metres and coverage of path/row 167/047) for the years 1990, 2000 and 2020
were obtained from the USGS Earth Explorer Portal (https://earthexplorer.usgs.gov). This
information was used to create a geographically corrected composite image of the Earth’s
terrain.

2.3 Land use land cover mapping using support vector machine in Google Earth Engine and
Google Colab
Land Use and Land Cover (LULC) modelling in Google Earth Engine (GEE) uses the robust
cloud computing platform to process and analyse large data sets for environmental
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monitoring. For LULC classification, the Support Vector Machine (SVM) algorithm is
commonly used because it can effectively process high-dimensional data and is capable of
modelling complex non-linear boundaries between classes (Talukdar et al., 2020). In this
context, the SVM works by finding the hyperplane that best separates the different land
cover classes in the feature space, thus maximising the distance between classes (Mallick
et al., 2021). The input data for the SVM usually includes multispectral image data, such as
that from Landsat, which provides detailed spectral information for different land cover
types. This data is pre-processed to correct for atmospheric and sensor distortions, followed
by segmentation and feature extraction processes that facilitate classification.

Figure 1.
Location of the
study area
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In the practical application of LULC mapping with SVM in GEE and visualisation of the
results in Google Colab, the workflow starts with the import of satellite imagery and the
selection of relevant bands corresponding to different land cover signatures. The classes for
LULC mapping are predefined, e.g. built-up, water bodies, dense vegetation, sparse
vegetation, farmland, scrubland, bare soil and exposed rock. For each pixel in the image, the
SVM algorithm assigns a class based on the spectral signature. Training the SVM model
requires a set of labelled data (training samples) representing each land cover class. Once the
model is trained and validated, it is applied to the entire dataset to create the LULC map. In
Google Colab, the mapping results are enriched with visual elements such as north arrows
and scale bars using matplotlib, as shown in the code snippet provided. This approach not
only facilitates the understanding and interpretation of the spatial distribution of the
different land cover types, but also improves the accuracy of the spatial analysis by including
additional geographic reference information.

2.4 Accuracy assessment of LULC maps
The accuracy assessment of LULC maps is a critical step to validate the reliability and
precision of classified satellite imagery, and the kappa coefficient is widely used for this
purpose (Talukdar et al., 2020). This statistical measure compares the observed accuracy (the
proportion of correctly classified pixels) against the expected accuracy (the probability of
random agreement) to provide a robust assessment of classification performance. To
implement this, a confusion matrix is first constructed, detailing the actual versus predicted
classifications of a sample of pixels. Each element in the matrix represents the count of pixels
for each actual-predicted class pair, allowing for the calculation of overall accuracy and class-
specific metrics. The kappa coefficient is then calculated from this matrix to quantify the
agreement level, adjusting for the chance agreement. A value of 1 indicates perfect
agreement, while a value of 0 or less suggests no agreement better than random chance. This
method not only assesses the overall accuracy but also helps in identifying specific classes
that may be consistently misclassified or confused, guiding further refinement of the
classification process (Talukdar et al., 2021).

2.5 Quantification of urban growth using MSPA in Google Colab
Quantifying urban growth using Morphological Spatial Pattern Analysis (MSPA) in Google
Colab involves a systematic approach to differentiating and categorising spatial patterns in
urban environments (Liu et al., 2024a, b). MSPA is a method by which a binary landscape can
be broken down into several spatial core components such as cores, edges, bridges, loops,
perforations, islands and bifurcations (Jiang et al., 2024). This is particularly useful in urban
studies to quantify and understand the growth and structural complexity of urban areas over
time. The process begins with the reclassification of Land Use and Land Cover (LULC) maps
into binary imageswhere built-up areas are labelled with one value (often 1) and all other land
uses with another value (usually 0). This binary conversion is crucial for MSPA as it
simplifies the landscape into urban and non-urban areas and allows for detailed analysis of
urban structure and patterns (Ding et al., 2024).

The implementation of MSPA in Google Colab involves several steps of image processing
and analysis using tools from libraries such as NumPy, Matplotlib and skimage for
morphological operations. First, binary images representing built-up areas for different years
are generated to perform morphological operations. The function identify_core_areas
removes small objects and thus isolates significant urban cores. The identify_complex_
structures function further analyses the binary image to identify specific morphological
elements such as bridges (narrow connections between larger urban areas), islets (small
isolated urban patches) and branches (linear extensions of urban areas). These elements are
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crucial for understanding urban connectivity and fragmentation. MSPA operations such as
binary_opening and skeletonise are used to distinguish between urban core areas, edges and
other structural components. The MSPA analysis results in a segmentation of the urban
landscape into different elements, each representing a unique aspect of the urban form, such
as core areas, edges and connections. In the final step, eachMSPA element in the landscape is
assigned a unique index that facilitates the visualisation and comparison of urban growth
patterns over time. These elements are quantified and mapped to visualise the spatial
configuration and evolution of urban areas. The resulting MSPA classes are then mapped
onto the original spatial grid, creating a composite image that vividly depicts urban growth
and morphological changes over the selected time periods.

2.6 Trend analysis using bootstrapping in Google Colab
Trend analysis using bootstrapping is a robust statistical method to understand the temporal
dynamics of LULC changes and MSPA categories. This technique is critical for quantifying
the rate of change and determining the significance and reliability of observed trends over
time. The process begins by compiling temporal data into a structured dataset, with each
dataset representing a snapshot in time and containingmeasurements for different LULC and
MSPA categories. In the context of LULC andMSPA, these data could represent the extent of
built-up areas, water bodies, vegetation types and MSPA-defined structures such as core,
bridge, loop, island and bifurcation areas.

When performing trend analysis with bootstrapping, numerous samples of the original
dataset are generated with replacement to create a distribution of trend estimates. This
method enables the calculation of a more accurate trend estimate and the creation of
confidence intervals around the trend, which provide a measure of the variability and
reliability of the estimate. The statistical significance of the trend is determined by hypothesis
testing, usually using a p-value from a linear regression model of the original data. By
repeatedly sampling the data and recalculating the slope (of the trend) for each sample, the
analysis takes into account the uncertainty and variability of the data, resulting in more
robust and reliable trend estimates. The bootstrapping approach is particularly useful for
ecological and environmental studies where the data may be noisy or have a non-normal
distribution, making traditional parametric trend tests less reliable. The final result of this
analysis includes the estimated trend, the confidence interval around this trend and the
p-value, which indicates the significance of the observed trend and provides a comprehensive
overview of the temporal dynamics of the phenomena under investigation.

The methods used for this study is presented in Figure 2.

3. Results
3.1 Dynamics and quantification of LULC
The kappa coefficient values, which reflect the accuracy of LULC classification over
three decades, show a high degree of consistency, with values of 81.43 in 1990, 80.60 in 2000
and 85.40 in 2020. These coefficients indicate reliable classification performance over time,
with a slight improvement in 2020. The kappa values, which are above 80, indicate a very
good agreement between the classified images and the reference data, thus confirming the
reliability of the LULC maps produced. The area covered by each LULC class has changed
considerably between 1990 and 2020 (Figure 3). Built-up areas increased dramatically from
62.46 km2 in 1990 to 271.45 km2 in 2020, indicating strong urban growth. In contrast, the area
of water bodies decreased from 1.36 km2 to 0.52 km2, indicating a decline in aquatic habitats.
Dense vegetation showed a notable increase from 1.28 km2 to 9.44 km2, which could indicate
effective protection measures or a recovery of natural vegetation. Areas of sparse vegetation
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and cropland fluctuated, with sparse vegetation first decreasing and then increasing and
cropland steadily decreasing over the 30-year period.

The bootstrapping trend analysis provided detailed insights into the temporal changes of
the LULC categories and quantified the annual rate of change with a high degree of precision
(Table 1). For built-up areas, the trend analysis revealed a remarkable expansion rate of
7.16 km2 per year. Although the p-value of the trend was 0.09, which means that it is not
statistically significant at the usual threshold of 0.05, the magnitude of change indicates a

Figure 2.
Hierarchical structure

of the methods
employed in this study
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substantial urbanisation process. For water bodies, a negative trend of �0.03 km2 per year
was observed, which despite its small magnitude was statistically significant with a p-value
of 0.04, indicating a steady reduction in water areas during the study period. For dense
vegetation, an increasing trend of 0.28 km2 per year was observed, indicating a gradual
expansion of vegetated areas. Although this trend did not reach statistical significance
(p 5 0.11), it reflects a positive ecological change. Sparse vegetation showed a slightly
negative trend of�0.12 km2 per year, with a high p-value of 0.93, suggesting that the changes
in sparse vegetation areas are due to natural fluctuations rather than a definite declining
trend. Cropland decreased by an estimated �0.33 km2 per year, with a p-value of 0.16,
indicating a trend towards decreasing agricultural use, but this trend was not statistically
robust. For scrubland, the decline was more pronounced at �4.36 km2 per year, but with a
p-value of 0.33, indicating that although there is a downward trend, it is not statistically
significant. Bare ground areas showed a decrease of�2.30 km2 per year (p-value5 0.43), and
exposed rock areas showed a slightly negative trend of�0.30 km2 per year with a p-value of
0.93, both indicating small decreases that could be influenced by methodological
uncertainties or the natural variability of land cover. These trends with associated
confidence intervals and p-values provide a nuanced view of the dynamics of the landscape.
They show that while some LULC categories experience notable changes, others remain
relatively stable or are subject to subtle shifts.

LULC classes Estimated trend 95% confidence interval p-value

Built_up 7.1586 [7.15861929, 7.15861929] 0.0883
Water_Body �0.0283 [�0.02832429, �0.02832429] 0.0390
Dense_vegetation 0.2815 [0.28153286, 0.28153286] 0.1108
Sparse_Vegetation �0.1213 [�0.12133286, �0.12133286] 0.9283
Cropland �0.3324 [�0.33237643, �0.33237643] 0.1581
Scrubland �4.3598 [�4.35983143, �4.35983143] 0.3321
Bare_Soil �2.2999 [�2.29987929, �2.29987929] 0.4339
Exposed_Rock �0.2983 [�0.29831143, �0.29831143] 0.9335

Note(s): The table quantifies the estimated annual trend for each LULC category, with the 95% confidence
interval and p-values indicating the precision and statistical significance of the trend estimates. A positive
trend value indicates an increase, while a negative value denotes a decrease in the area of the respective
LULC class
Source(s): Table by authors

Figure 3.
LULC dynamics in
Abha, Saudi Arabia
from 1990 to 2020

Table 1.
Trends in LULC
Classes in Abha, Saudi
Arabia, with
Corresponding
Statistical Significance
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The dynamics of LULC changes and their statistical significance have wider environmental
and socio-economic implications. The substantial growth of built-up areas can lead to habitat
loss, increased runoff and heat island effects in cities. The decline of water bodies could have an
impact on local hydrology and biodiversity. However, the increase in dense vegetation areas
could offset somenegative environmental impacts, indicatinga possible trend towards greening
the region.These changes emphasise the need for integratedurbanplanningand environmental
protection strategies to create a balance between development and environmental
sustainability. This is supported by continuous monitoring and analysis using platforms
such as Google Earth Engine and Google Colab for accurate and timely data processing.

3.2 Application of MSPA for urban growth quantification in Google Colab
The application of MSPA in Google Colab to quantify urban growth provided insightful
results about the structural changes in urban areas (Figure 4). MSPA categories such as core,
bridge, loop, and branch were analysed over the years 2001, 2011 and 2021, revealing the
evolving urban landscape (Figure 5). Core areas, which represent the most consolidated

Figure 4.
Temporal analysis of

Built-up Areas in
Abha, Saudi Arabia

Figure 5.
Evolution of Urban

Morphological
Patterns in Abha,

Saudi Arabia
(1990–2020)
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urban zones, have increased significantly from 41.66 km2 in 2001 to 194.97 km2 in 2021. This
increase reflects the intensification and expansion of urban development and indicates a shift
towards a more densely built-up environment. The areas for bridges and loops, which
represent connectivity and circular urban structures respectively, have also grown, albeit at a
slower rate. Over the two decades, the bridge areas increased from 4.11 km2 to 13.74 km2 and
the loop areas from 9.40 km2 to 14.76 km2. These changes indicate an improvement in urban
connectivity and the complexity of urban layouts, possibly reflecting improved
infrastructure development and urban planning strategies. Islet and ’branch’ categories,
representing isolated urban elements and linear extensions of urban areas respectively,
experienced growth, with island areas increasing from 1.64 km2 to 4.83 km2 and branch areas
increasing from 5.65 km2 to 43.14 km2. The increase in branch areas is particularly notable as
it indicates the expansion of urban growth into the surrounding non-urban areas.

The bootstrapping trend analysis provides a comprehensive assessment of the dynamics
within each MSPA category during the study period (Table 2). In particular, the Core
category, which represents the heart of the urbanised areas, showed a pronounced growth
trend, increasing on average by 5.24 km2 per year. This figure, together with a p-value of 0.08,
indicates a strong tendency towards urban consolidation, although it is slightly below the
conventional statistical significance threshold of 0.05, suggesting a trend that, while
indicative of substantial urban growth, must be interpreted cautiously due to the potential
variability of the data.When examining the other MSPA categories, we find different rates of
change, each reflecting different aspects of urban development. The bridge category, which
denotes areas connecting different urban segments, grew by 0.33 km2 per year, indicating
improved urban connectivity. The loop category, which represents enclosed urban spaces,
increased by 0.17 km2 per year, indicating the development of circular or enclosed urban
forms. The island category, which covers small, isolated urban areas, increased by 0.11 km2

per year, indicating the emergence of new, discrete urban developments. Finally, the Branch
category, which captures the linear expansion of urban areas, showed a significant growth
rate of 1.30 km2 per year, illustrating the expansion of urban areas into neighbouring non-
urban areas. Although these trends provide valuable insights into the evolving urban
landscape, their p-values — which range from 0.08 to 0.13 — indicate that the observed
trends are not statistically significant at the strict 0.05 level. The quantitative trends
combined with the p-value considerations provide a nuanced perspective on urban expansion
and morphological change. They form the basis for informed urban planning and policy
design that recognises the multi-faceted nature of urban growth and its environmental and
social impacts.

The results of the MSPA emphasise the dynamic nature of urban growth and highlight
both the densification of urban core areas and the expansion of urban characteristics into the
periphery. In particular, the increasing trend in core and peripheral areas shows a pattern of
urban sprawl and densification that has implications for land use planning, infrastructure
development and environmental sustainability. These trends, quantified throughMSPA and

MSPA categories Estimated trend 95% confidence interval p-value

Core 5.242 [5.24160643, 5.24160643] 0.0824
Bridge 0.333 [0.33338571, 0.33338571] 0.1217
Loop 0.173 [0.17278071, 0.17278071] 0.1096
Islet 0.110 [0.10995429, 0.10995429] 0.0995
Branch 1.301 [1.30089214, 1.30089214] 0.1280

Source(s): Table by authors

Table 2.
Trends in LULC
Classes in Abha, Saudi
Arabia, with
Corresponding
Statistical Significance
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trend analysis, provide a valuable basis for understanding the spatial dynamics of urban
growth and inform policy and planning to address the environmental and social impacts of
urbanisation.

3.3 Management strategies
Based on the detailed MSPA analysis of the City of Abha, specific urban planning strategies
can be tailored to each MSPA category to address the unique challenges and opportunities
presented by urban growth patterns. For the Core category, which saw an increase of
5.24 km2/year, the strategy should focus on sustainable densification. This includes
promoting vertical development to accommodate the growing population while minimising
the footprint of new construction. The introduction of green building standards, the
improvement of public transport networks and the preservation of green spaces within these
core areas are crucial to maintaining quality of life and environmental quality. For the
expanding Bridge and Branch categories, with growth rates of 0.33 km2/year and 1.30 km2/
year, respectively, strategic planning should aim to seamlessly integrate these areas into the
existing urban fabric to facilitate connectivity and accessibility. For bridge areas, improving
infrastructure that promotes safe and efficient movement between different urban zones,
such as pedestrian bridges, cycle paths and public transport corridors, can improve
connectivity. In branch areas where sprawl is evident, land use planning should focus on
controlled expansion to prevent uncontrolled growth. This could include land use
regulations that encourage mixed use, preserve natural habitats and agricultural land to
prevent uncontrolled sprawl, and establish green buffer zones to maintain ecological
balance. In the case of the Loop and Islet categories, with modest increases of 0.17 km2/year
and 0.11 km2/year, respectively, the focus should be on integrating these features into the
urban landscape as unique elements that enhance the character of the city and biodiversity.
For loops, the creation of recreational and green spaces that encourage community
interaction and biodiversity conservation within these enclosed areas can improve urban
quality of life. Islands, as emerging urban fragments, should be developed with a focus on
sustainability and innovation, potentially serving as hubs for smart city initiatives,
community gardens or renewable energy projects. These strategies should be underpinned
by comprehensive planning, stakeholder engagement and environmental assessment to
ensure they make a positive contribution to Abha’s urban ecosystem and the wellbeing of its
residents.

4. Discussion
In this study, we conducted a comprehensive analysis of LULC dynamics and quantified
urban growth using MSPA in a cloud computing platform, spanning from 1990 to 2020. Our
research applied advanced cloud computing technologies to assess changes in land cover and
urban expansion. The reliability of our LULC classification, affirmed by robust kappa
coefficient values, shows high consistency over the years. We observed significant increases
in built-up areas and declines inwater bodies, indicating a notable shift in vegetation patterns
during the study period.

Similar to the findings by Zhang et al. (2024), who optimized ecological networks in arid
regions using MSPA-MCR, our study enhances understanding of urban ecological
frameworks by integrating MSPA to assess urban growth patterns. Our approach aligns
with Liu et al. (2024a, b), who enhanced theMSPAmethod to include ecological sensitivity, by
using cloud computing to improve MSPA’s capability in identifying critical ecological and
urban areas. Li et al. (2024) and Jiang et al. (2024) discuss the synergy in ecological networks
and heat exposure mitigation in urbanized areas, respectively. These studies, together with
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our findings, highlight the urgent need for methodologies that integrate environmental and
urban planning to sustainably manage urban sprawl and its ecological impacts. Our work
adds to this discussion by providing quantitative measures of LULC changes, leveraging
cloud computing for improved data processing and analysis efficiency. Additionally, the
novel use of Google Earth Engine and Google Colab in our study has revolutionized the
process of LULC classification and trend analysis. As highlighted by Talukdar et al. (2020)
and Mallick et al. (2021) in their reviews and novel classifier improvements for satellite
observations, our application of these platforms facilitated detailed classification and real-
time analysis, offering a robust framework for evaluating urban and environmental changes.
Our methodology uniquely integrates Google Earth Engine for detailed land cover
classification and Google Colab for conducting complex calculations necessary for trend
analysis and MSPA. This methodological innovation is crucial for understanding urban
forms and structures, similar to Ding et al. (2024), who analysed habitat isolation using an
ecological network approach. Our findings contribute to both the academic understanding of
LULC dynamics and the strategic goals of Saudi Vision 2030, promoting sustainable
development strategies that balance economic growth with environmental protection.

By leveraging advanced technologies and analytical methods, our study supports the
vision for a more sustainable and resilient urban future, aligning with the digital
transformation objectives of Saudi Arabia. This integration not only highlights the
novelty of our research but also positions it as a significant contributor to the field of urban
LULC analysis, offering actionable insights for other regions experiencing similar rapid
urban transformations.

5. Conclusion
This study conducted a detailed analysis of Land Use and Land Cover (LULC) changes in
Abha City, Saudi Arabia, from 1990 to 2020 using Support Vector Machine (SVM)
classification within the Google Earth Engine and Morphological Spatial Pattern Analysis
(MSPA) in Google Colab. Quantitatively, the study documented a significant urban
expansion with built-up areas growing from 62.46 km2 in 1990 to 271.45 km2 in 2020,
representing a more than fourfold increase. Concurrently, water bodies witnessed a notable
reduction, shrinking from 1.36 km2 to 0.52 km2 during the same period. MSPA further
revealed a substantial transformation in urban structure, with urban core areas increasing
from 41.66 km2 in 2001 to 194.97 km2 in 2021. This quantification of urban densification
underscores the ecological and urban pressures from expanding city boundaries. These
findings are crucial for sustainable urban planning and environmental management and are
in line with the goals of the Saudi Vision 2030 for sustainable development and urbanisation.
The significance of this work lies in the innovative integration of cloud computing and
machine learning for detailed temporal and spatial environmental analysis. It offers valuable
insights into the impact of urbanisation on the natural landscape and provides a
methodological framework for similar studies in other regions. However, the study
encountered limitations, such as the potential for misclassification in the SVM and
dependence on available satellite imagery, which could affect the accuracy of historical LULC
assessments. Future research should focus on incorporating more diverse data sources, such
as drone imagery and ground data, to improve classification accuracy and depth.
Longitudinal studies could extend the analysis to predict future changes in LULC under
different scenarios of urban planning and climate change. Encouragingly, the methodology
and results of this study provide a solid foundation for other researchers advocating the use
of advanced technologies in environmental monitoring and urban planning. The research
highlights the need for continuous and detailed LULC analysis to support sustainable
development initiatives, especially in rapidly urbanising regions such as Abha City.
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