To read this content please select one of the options below:

Numerical simulations of a three‐dimensional nozzle, from inviscid to turbulent flows

S. Aubert (Ecole Centrale de Lyon/Université Claude Bernard—Lyon 1, Laboratoire de Méchanique des Fluides et d’Acoustique (LMFA), URA CNRS 263, Ecole Centrale de Lyon, 36, avenue Guy de Collongue, BP 163, 69131 Ecully Cedex, France)
L. Hallo (Ecole Centrale de Lyon/Université Claude Bernard—Lyon 1, Laboratoire de Méchanique des Fluides et d’Acoustique (LMFA), URA CNRS 263, Ecole Centrale de Lyon, 36, avenue Guy de Collongue, BP 163, 69131 Ecully Cedex, France)
P. Ferrand (Ecole Centrale de Lyon/Université Claude Bernard—Lyon 1, Laboratoire de Méchanique des Fluides et d’Acoustique (LMFA), URA CNRS 263, Ecole Centrale de Lyon, 36, avenue Guy de Collongue, BP 163, 69131 Ecully Cedex, France)
M. Buffat (Ecole Centrale de Lyon/Université Claude Bernard—Lyon 1, Laboratoire de Méchanique des Fluides et d’Acoustique (LMFA), URA CNRS 263, Ecole Centrale de Lyon, 36, avenue Guy de Collongue, BP 163, 69131 Ecully Cedex, France)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 1 October 1995

78

Abstract

Two numerical methods, based on high order finite volume formulations and upwind schemes, are used to compute the two‐ and three‐dimensional flow field in a transonic nozzle. The influence of numerical diffusivity, boundary treatment and mesh structure is explored for inviscid and turbulent configurations. First order computations provide significantly different inviscid results. However, high order methods lead to similar solutions. An explanation of the error generated through the shockwave is proposed in this case. The two‐dimensional interaction of the shock with the thin turbulent boundary layer developing on the bump wall is also presented. Good agreement between both approaches is obtained considering the rapid thickening of the boundary layer due to the shock. Furthermore, the downstream velocity recovery is almost identical. Only slight discrepancies occur in the main flow, near the outer edge of the boundary layer. These seem to be related to the way the turbulence model deals with the free stream turbulence. Finally, preliminary three‐dimensional unstructured turbulent results are presented and discussed.

Keywords

Citation

Aubert, S., Hallo, L., Ferrand, P. and Buffat, M. (1995), "Numerical simulations of a three‐dimensional nozzle, from inviscid to turbulent flows", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 5 No. 10, pp. 889-905. https://doi.org/10.1108/EUM0000000004127

Publisher

:

MCB UP Ltd

Copyright © 1995, MCB UP Limited

Related articles