KEFST: a knowledge extraction framework using finite-state transducers

Ahsan Mahmood (Department of Computer Science, COMSATS University Islamabad, Attock, Pakistan)
Hikmat Ullah Khan (COMSATS University Islamabad, Attock, Pakistan)
Zahoor Ur Rehman (Department of Computer Science, COMSATS University Islamabad, Attock, Pakistan)
Khalid Iqbal (Department of Computer Science, COMSATS University Islamabad, Attock, Pakistan)
Ch. Muhmmad Shahzad Faisal (Department of Computer Science, COMSATS University Islamabad, Attock, Pakistan)

The Electronic Library

ISSN: 0264-0473

Publication date: 1 April 2019

Abstract

Purpose

The purpose of this research study is to extract and identify named entities from Hadith literature. Named entity recognition (NER) refers to the identification of the named entities in a computer readable text having an annotation of categorization tags for information extraction. NER is an active research area in information management and information retrieval systems. NER serves as a baseline for machines to understand the context of a given content and helps in knowledge extraction. Although NER is considered as a solved task in major languages such as English, in languages such as Urdu, NER is still a challenging task. Moreover, NER depends on the language and domain of study; thus, it is gaining the attention of researchers in different domains.

Design/methodology/approach

This paper proposes a knowledge extraction framework using finite-state transducers (FSTs) – KEFST – to extract the named entities. KEFST consists of five steps: content extraction, tokenization, part of speech tagging, multi-word detection and NER. An extensive empirical analysis using the data corpus of Urdu translation of Sahih Al-Bukhari, a widely known hadith book, reveals that the proposed method effectively recognizes the entities to obtain better results.

Findings

The significant performance in terms of f-measure, precision and recall validates that the proposed model outperforms the existing methods for NER in the relevant literature.

Originality/value

This research is novel in this regard that no previous work is proposed in the Urdu language to extract named entities using FSTs and no previous work is proposed for Urdu hadith data NER.

Keywords

Citation

Ahsan Mahmood, Hikmat Ullah Khan, Zahoor Ur Rehman, Khalid Iqbal and Ch. Muhmmad Shahzad Faisal (2019) "KEFST: a knowledge extraction framework using finite-state transducers", The Electronic Library, Vol. 37 No. 2, pp. 365-384

Download as .RIS

DOI

: https://doi.org/10.1108/EL-10-2018-0196

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.