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Abstract
Purpose – Digital markets are increasingly constructed by an interplay between (non)humanmarket actors,
i.e. through algorithms, but, simultaneously, fragmented through platformization. This study aims to explore
how interactional dynamics between (non)human market actors co-codify markets through expressive and
networked content across social media platforms.
Design/methodology/approach – This study applies digital methods as cross-platform analysis to
analyze two data sets retrieved from YouTube and Instagram using the keywords “sustainable fashion” and
#sustainablefashion, respectively.
Findings – The study shows how interactional dynamics between (non)human market actors, co-codify
markets across two social media platforms, i.e. YouTube and Instagram. The authors introduce the notion of
sticky market webs of connection, illustrating how these dynamics foster cross-platform market codification
through relations of exteriority.
Research limitations/implications – Research implications highlight the necessity to account for all
involved entities, including digital infrastructure in digital markets and the methodological potential of cross-
platform analyses.
Practical implications – Practical implications highlight considerations managers should take into
account when designing market communication for digital markets composed of (non)human market
actors.
Social implications – Social implications highlight the possible effects of (non)human market co-
codification onmarkets and consumer culture, and corresponding countermeasures.
Originality/value – This study contributes to an increased understanding of digital market dynamics
by illuminating interdependent market co-codification dynamics between (non)human market actors,
and how these dynamics (de)territorialize digital market assemblages through relations of exteriority
across platforms.
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1. Introduction
The digital transition of markets not only reconfigured the compositionality of market actors
significantly but also disassembled markets into platformized, appified (Rogers, 2019), and
therefore fragmented parts. Compositional reconfiguration of market actors refers to a shift in
market authority and communication from traditional market agents, such as high profile
brands, designers and magazines, to a more inclusive and complex assemblage of market actors,
such as content creators, influencers or regular users (Caliandro and Gandini, 2016; Dolbec and
Fischer, 2015). Even regular users’ voices, (counter)narratives, (anti)stances, ethical and
sustainable concerns accumulate and have a profound impact on a market level (Schöps et al.,
2020). However, platformization separates the digital market space into corporate “walled
gardens” (Dekker and Wolfsberger, 2009), in which “a handful of tech companies [. . .] define the
principles of a market-driven ecosystem” (Van Dijck, 2021, p. 2816), such as Google (YouTube), or
Facebook (Instagram), segregating users and their distinct content in enclosed digital market
spaces (Rogers, 2019). These enclosed digital market spaces “are fueled by data and governed by
algorithms,” constituting “platform ecosystems—an assemblage of networked platforms,
governed by a particular set of mechanisms” (Van Dijck, 2021, p. 2804). Digital market spaces,
therefore, fundamentally alter the foundations of market infrastructure, market actor
compositionality and interactional dynamics between market actors, i.e. human, e.g. content
creators and regular users, and nonhuman market actors, e.g. algorithms. This paper aims to
investigate the role of different market actors in the dynamic formation of digital market
assemblageswithin and across platforms.

Across platforms, user-generated content takes on multiple forms, ranging from forms of
entertainment (Gannon and Prothero, 2018), influencer-driven advertorials (Abidin, 2016) and
user-generated ads (Muñiz and Schau, 2007), to activist campaigns (Boyd et al., 2016), depending
on the distinct social media platform, and its “incentives” for its users. YouTube, for instance,
promotes professional content creation by ad and YouTube premium revenue or channel
memberships for content creators (Google, 2020), whereas the gates of Instagram are more
inclusive toward regular users joining marketplace conversations (Schöps et al., 2020). Despite
facing platformized “walled gardens,” distinct user groups are able to connect to and
communicate with each other across platforms through a shared common interest and market
understanding (Humphreys, 2010; Lusch and Watts, 2018) expressed by a shared market
language and expressive networked content. Market language refers to the framing of a market-
embedded and market-related social issue into platform jargon (Rogers, 2019), which is used to
tag expressive networked content. This translatability of shared market language into platform
vernacular renders social mediamarket discourse interactive,fluid and plastic across platforms.

However, market agency cannot only be attributed to human market actors but also to
digital technology such as machine learning algorithms. Agentic nonhuman entities, for
example, co-create consumer experiences (Hoffman and Novak, 2018), shape algorithmic
consumer culture (Airoldi and Rokka, 2019) or co-reproduce musical classification (Airoldi,
2021). Similarly, nonhuman entities are co-codifiers of market language, terminology and
content; that is, market codification increasingly derives from interactional and
interdependent dynamics between (non)human market actors. Nevertheless, research on
digital market culture and dynamics mostly leaves this agentic role of digital technology
and infrastructure implicit.

As a consequence, scholars recently call for research that offers a more nuanced, agentic
view of technology in markets by “zooming in on the infrastructures of market meaning-
making” (Nøjgaard and Bajde, 2021, p. 142). Airoldi (2021), for example, argues for “a
comparative and more comprehensive understanding of the making and techno-social
reproduction of cultural [market] boundaries (. . .) ideally through cross-platform
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investigations” to account for “the changeability of algorithms and digital affordances.”
Accounting for the specificities of cultural market production and formation in and across
digital ecosystems, this study applies an assemblage theoretical perspective (DeLanda, 2006,
2016) and digital methods (Rogers, 2019) to investigate how interactional dynamics between
(non)human market actors co-codify markets across social media. This paper makes three
important contributions. First, this study increases understanding of the enabling and
constraining capacities of digital market technology and infrastructure for cross-platform
market development. Second, this research illuminates how recursive interactions between
(non)human market actors build networks of shared market understandings, connecting the
enclosed, platformized parts to an overall market assemblage of networked platforms.
Third, this paper advances understanding of user-driven market shaping, demonstrating
how both professional and regular users contribute to market codification by collectively
assembling, disseminating and circulating cultural market meaning through expressive
networked content across social media.

To this end, the article, first, outlines digital markets as socially co-constructed systems
of (non)human market actors and the theoretical lens used to describe (non)human market
co-codification dynamics across social media, and lays out the research context and
procedure. Second, the findings empirically illustrate (non)human market co-codification
across social media. Third, a discussion and implications for practice, society and research
summarize themain contributions and theoretical advancements of this study.

2. Literature review
Markets can be understood as socially constructed, self-reproducing networks of parts,
where repeated exchange takes place under the governance of (in)formal rules and cultural
understandings guiding interactions and relations (Fligstein and Calder, 2015; Vargo et al.,
2017). As such, markets constitute complex social systems in which “discursive negotiations
among and practices of multiple stakeholders including a market-shaping consumer”
(Giesler and Fischer, 2017, p. 3) result in a shared market understanding (Lusch and Watts,
2018). Prior research on the constitution of market discourse suggests that market meaning
and understanding are dynamically shaped through collective framing of cultural codes and
market categories among market actors (Blanchet, 2018; Holt, 2012). Moreover, shifts in
semantic categories lead to changes in market meaning that, in turn, influence cultural
concepts and consumption practices (Humphreys, 2010). Also, research acknowledges users’
influence on the formation and shaping of market understanding (Harrison and Kjellberg,
2016), for instance, when they seek to change market representations and transform market
meanings through identity work (Ulver, 2019).

Recent research frames social media as enablers of market interaction by empowering
users’ role in the marketplace (Lamberton and Stephen, 2016). Yet, only a few studies
elaborate on the actual relevance of social media and its users in market shaping. For
instance, user innovation research sheds light on the mediating role of social media in the
creation and qualification of exchange objects and services (Muninger et al., 2019), whereas
user-driven market-shaping studies acknowledge the central role of, for example, fashion
bloggers in institutional work, the reinforcement of institutional market logics and the
unsettlement of institutionalized market practices (Dolbec and Fischer, 2015; Scaraboto and
Fischer, 2012). However, these research streams only grant social media either an enabling
or mediating role of user-driven framing and shaping of cultural codes and semantic
categories attached to markets but do not account for the increasingly agentic role of digital
technology and infrastructure in these market dynamics.
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Social media and other digital entities are not just enablers and mediators of
socioeconomic, cultural and political interactions that impact markets but, in fact, active
organizers and drivers of both interactional and communicational infrastructure and market
actor composition (Nieborg and Poell, 2018). Nonhuman market actors increasingly receive
scholarly attention as agentic entities. Hoffman and Novak (2018) theorize smart objects as
nonhuman actors that actively impact individual consumption behavior and experiences.
Likewise, algorithms constitute an active nonhuman workforce, shaping shared
understandings of the world (Kitchin, 2017) by controlling the visibility of culture as
curators and gatekeepers, and can therefore be considered as key authorities in taste- and
preference-making (Beer, 2013; Roberge and Seyfert, 2016; Wu et al., 2019).

Nevertheless, nonhuman and human activities are inherently intertwined. On the one
hand, content recommendation algorithms apply machine learning based on aggregated
behavioral patterns of social media users (Airoldi et al., 2016; Covington et al., 2016). On the
other hand, content creators theorize how algorithms work and adopt a promotional mindset
to optimally cater their content to algorithms (Carah and Brodmerkel, 2020; Cotter, 2019; Wu
et al., 2019). For example, by using specific hashtag vernacular, content creators not only
join affordance-mediated conversations but also redesign their expressive networked
content to be better recognized and distributed by algorithms. These entangled (non)human
activities eventually result in “a recursive loop between the calculations of the algorithm and
the “calculations” of people” (Gillespie, 2014, p. 183), forming bubbles and algorithmic
consumer cultures (Airoldi and Rokka, 2019; Carah and Brodmerkel, 2020) produced by
iterative cycles of user and machine actions and corresponding responses. Algorithmic
cultures manifest in vast clouds of expressive and networked cultural codes that echo with
people, digital technology and infrastructure on a market level.

The present study aims to investigate these clouds of expressive and networked cultural
codes as digital manifestations of market meaning and understanding across social media
by drawing on an assemblage perspective. In doing so, this study focuses on how
interactional dynamics between heterogeneous arrangements of (non)human market actors
co-codify markets across social media.

3. An assemblage perspective on market codification on social media
Assemblages are heterogeneous arrangements or groupings of entities, consisting of
emergent properties and capacities (DeLanda, 2016). As such, assemblages evolve from
continuous interactions between their parts, that is, “people and the material and expressive
goods people exchange” (DeLanda, 2006, p. 17). These interactions can either territorialize or
deterritorialize the identity of an assemblage (DeLanda, 2006). Digital market assemblages
are particularly interesting, as these assemblages do not only derive from human-human
interaction but also increasingly from recursive human-nonhuman interaction (Hoffman and
Novak, 2018). Assemblage theory reemphasizes sociomateriality, that is, the co-constitution
of human and nonhuman actors as “humans are always in composition with nonhumanity,
never outside of a sticky web of connections or an ecology” (Bennett, 2004, p. 365). In
particular, a flat ontology perspective (DeLanda, 2016) helps to identify different modes of
organization involved in co-codifying digital market assemblages whereby (non)human
market actors both “mod(e)ify” and are modified by the other” (Bennett, 2010, p. 22). Flat
ontology grounds all involved entities on the same ontological level – only differentiating
their “spatio-temporal scale” (DeLanda, 2002, p. 51). Accordingly, any given arrangement
(original text: (fr.) agencement) of human, i.e. content creators, or regular users, and
nonhuman market actors, i.e. algorithms, or hashtags, creates agency (DeLanda, 2016) as
“agency always depends on the collaboration, cooperation, or interactive interference”
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(Bennett, 2010, p. 21) of multiple entities. In the context of this study, assemblage theory
helps to account for the agentic nature of digital market assemblages, where “different
actors, agencies, materialities, and relations” (Bode and Kjeldgaard, 2017, p. 253) come to
interact and interfere with each other.

Furthermore, assemblages are defined along two axes – the material and expressive
capacities of components axis and the territorialization and deterritorialization axis
(DeLanda, 2006, 2016). The first axis refers not only to concrete material entities, such as
physical products or consumers but also to the material capacity of social media platforms
to support market actors in their effort to seek market change (Parmentier and Fischer, 2014;
Scaraboto and Fischer, 2012). Expressive capacities refer to human market actors’ content
consisting of textual and visual narratives, and networked contextualization and
categorization of content, e.g. via hashtags (Caliandro and Gandini, 2016). The second axis
specifies the “determination of the spatial boundaries of the whole” (DeLanda, 2016, p. 22) or
the extent of homogenization of the assemblage parts. In other words, the identity of an
assemblage is more territorialized, the higher the density of an assemblage; and more
deterritorialized, the higher the heterogeneity of an assemblage as a whole (DeLanda, 2016).
For example, market deterritorialization occurs when market actors challenge “dominant
market forms, ideologies, and/or practices” (Nenonen et al., 2014, p. 9) through constant
interaction, negotiation and exchange of shared understandings (Geiger et al., 2012; Lusch
and Watts, 2018). Deterritorialization renders boundaries between parts of the market
assemblage more fluid and plastic (Nenonen et al., 2014). Assemblages exhibit relations of
exteriority, implying that parts of the whole are autonomous and “can be detached from one
whole and plugged into another one, entering into new interactions” (DeLanda, 2016, p. 10).
These (de)territorialization dynamics are not only induced by human market actors but also
mediated by nonhuman actors, i.e. algorithms, or hashtags (Schöps et al., 2020). Finally, the
identity of an assemblage is determined by degrees of coding and decoding (DeLanda, 2016).

(De)coding refers to the openness of an assemblage to change, or, put differently, to
“specialized expressive components” (DeLanda, 2016, p. 24) that fix an assemblage’s identity
by (de)legitimizing rituals, regulations, rules, norms or standard procedures. In this study,
(de)coding involves the demarcation of markets by (non)human market actors via
associative or dissociative market language and networked content generation (Wood,
2020).

Consequently, assemblage theory enables not only to investigate the composition of
markets (Canniford and Bajde, 2016) but also the interplay between all entities within a
market assemblage. By navigating along these theoretical cornerstones, we illuminate
market codification dynamics across social media, induced by interactions between (non)
human market actors – content creators, influencers, regular users, algorithms and
hashtags. As a research context, we chose to analyze transformative (non)human
co-codification dynamics in the fashion market, manifested in expressive clouds of market
language and networked content across social media, and how these codifications enable
and constrain the market as a whole.

4. Empirical study
4.1 Research context
The fashion industry has experienced tremendous growth in the past 20 years, mainly
pushed by business practices subsumed under the label “fast fashion,” i.e. continuous trend-
spotting, and subsequent quick implementation of trendy designs, short production and
distribution lead times and extensive demand creation and marketing efforts (Cachon and
Swinney, 2011). Many market actors have followed pioneers, such as Zara or H&M, that
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established fast fashion as the dominant business model in the market (Kim et al., 2013).
However, these practices are increasingly scrutinized due to fast fashion’s exploitation of
people and the environment, which, in turn, fuels public discourse, raises awareness among
critical consumers and opens themarket to sustainable alternatives (Ertekin andAtik, 2015).

As a consequence, the fashion market is experiencing radical rethinking, manifesting in
environmental, prosocial, slow fashion, reuse, recycling, cruelty-free and anti-consumption
and anti-production practices (Mukendi et al., 2020). One key driver that spreads and fosters
rethinking and subversion of dominant market practices is digital technology (Schöps et al.,
2020). Recent research emphasizes the centrality of social media in the transformation of the
fashion market towards a more sustainable form (Han et al., 2017; Strähle and Gräff, 2017),
suggesting that exposure to sustainable fashion content and related consumer engagement
on social media platforms drives consumers’ attitudes and values. Shifting attitudes and
values, in turn, not only affects consumption behavior but also market norms (McKeown
and Shearer, 2019).

Adding to these findings, the present study uses the digital transformation of the fashion
market as a context to investigate interactional market co-codification dynamics between
(non)human market actors across the two most relevant social media platforms for fashion –
YouTube and Instagram (Gannon and Prothero, 2018; Sokolova and Kefi, 2020). On the
human side, content creation on YouTube constitutes professional labor, premising
expertise in video production, storytelling, postproduction as well as the use of costly hard-
and software, and high-end video equipment. On the nonhuman side, algorithms drive more
than 70% of the time users spend watching content on YouTube (Solsman, 2018). Applying
deep neural networks technology (Covington et al., 2016), the main data input for machine
learning algorithms comprises both individual and collective user behavior.

Contrary to YouTube, entry barriers for content creation on Instagram are rather low (i.e.
easy-to-use, built-in image editing tools) enabling regular (nonprofessional) users to
conveniently join marketplace conversations (Schöps et al., 2020). However, Instagram does
not generate internal income streams for users. Users who aspire to generate income streams
on Instagram have to push their attentional capital to generate external income streams
through collaborative, influencer-esque advertorials for brands. Similar to YouTube,
algorithms on Instagram curate user feeds but only by assembling posts of followed
accounts in a nonchronological order, based on content engagement and personal
preferences. Nonfollowed, algorithm-curated content is only recommended to users in the
explore feed to which users have to deliberately switch.

4.2 Research procedure
As an analytical framework, this study applies digital methods in the form of a cross-
platform analysis (Rogers, 2019) to investigate how (non)human market actors co-codify
sustainable fashion through interactive interference across social media (Figure 1). “Digital
methods” is “an umbrella term for tool-based methods used in the digital humanities and
e-social sciences” (Rogers, 2019, p. 203). These tool-based methods allow to analyze natively
digital objects and content that frame market dynamics in digital market assemblages
(Schöps et al., 2020). Digital methods follow a mixed-method approach, that is, a “quanti-
quali approach” (Venturini et al., 2014) in which an initial computational analysis is
subsequently followed by “a qualitative close reading of the data” (Niederer, 2016, p. 111).
Digital methods propose a “search as research” paradigm. Therefore, the first step is to
identify keywords – so-called issue language – that is, “the terms employed by the actors”
(Niederer, 2016, p. 36) to express a social issue in platform vernacular. In the context of this
study, issue language takes on the form of market language, i.e. a distinct language that
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allows market actors to express practices and issues in the form of semantic concepts and
themes that are either tied to fast or sustainable fashion. The identification of the most
dominant keyword in this language informs the subsequent query design (Rogers, 2019).

In the first step, we observed and investigated all relevant media, ranging from news, blogs,
websites and documentaries to social media to become familiar with sustainable fashion market
language and determine the most dominant keyword in this market language (Figure 1). To
substantiate dominant keyword identification, we conducted an extensive literature review.
Literature on sustainable fashion is widely distributed across management research and renders
sustainable fashion approaches under labels such as ethical fashion, eco fashion, slow fashion or
green fashion. However, we identified the term “sustainable fashion” as the most dominant
umbrella term, keyword, respectively. A systematic literature review on sustainable fashion
including 465 research papers byMukendi et al. (2020) confirmed the keyword analysis.

The second step of a digital methods approach is then to set up a query design, using the
identified keyword(s) for data collection. For this study, we conducted a cross-platform analysis,
consisting of two query designs, and, correspondingly, collected two “natively digital” data sets
from YouTube and Instagram. We investigate YouTube as a network of content producing and
diffusing market actors, that is, algorithms and professional content creators that produce
(nonhuman-made) recursive loops of (human-made) content for consumption, and Instagram as a
network of regular users (Caliandro and Gandini, 2016) that mirrors the extent of how (non)
human-induced market co-codifications – in this study market codification of sustainable
fashion – are internalized by and resonate with this user group.

4.3 Query design data set 1
We collected the YouTube data set using YouTube Data Tools (Rieder, 2015) in February
2020. First, we explored videos that are presented to users by YouTube search engine, which

Figure 1.
Research procedure
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is “[. . .] a socioalgorithmic process involved in the construction of relevance and knowledge
around a large number of issues” (Rieder et al., 2018, p. 52), where users define their search
with specific keywords, and ranking and recommendation algorithms define the search
results (Rieder et al., 2018).

In doing so, we performed a single keyword query with the keyword “sustainable
fashion” to generate a list of the top 100 YouTube videos based on their “relevance”
according to the YouTube search algorithm. To disclose as little individual information as
possible to algorithms, we used a research browser, i.e. a separate instance of a browser (in
our case Firefox), allowing to clean cookies, and ensuring disentanglement from Google
(Rogers, 2019). Therefore, the results are predominantly based on aggregated viewing
behavior and user engagement data which determines the visibility of content and its
creators. Subsequently, YouTube Data Tools helped to identify those videos that are related
by recommendations created by the YouTube “watch next” algorithm. Data collection on
YouTube resulted in a final sample of 4,329 videos published by 1,682 channels (content
creators). The videos have an average view count of 2,062,381 and an average number of
likes of 20,147, illustrating that the content is produced by professional content creators.

4.4 Analysis data set 1
Data analysis encompassed a networked content analysis (Niederer, 2016). First, we used the
open-source software Gephi (Bastian et al., 2009) to perform computational network analysis
of the YouTube data. Computational network analysis investigates relations between videos
and relations between channels. Specifically, we calculated network statistics and
visualizations for both networks. In the video network, we used the modularity class
algorithm (no edge weight, resolution 1.0) (Brandes et al., 2008) to visualize thematic clusters
of densely connected nodes (videos). To highlight the most visible videos, node size
was adjusted according to in-degree level – a centrality measure based on the number of
links directed toward a node (Yang et al., 2016). To enhance readability, we filtered out
nodes with less than 50 links. The final video network graph comprises the 327 most visible
videos (node visibility: 6.64%). In the channel network visualization, we adjusted node size
according to network centrality – the bigger the node size, the more connections, and,
therefore, the more centrality in the network – and defined a degree cutoff level of 20,
resulting in 16.94% node visibility, i.e. 285 nodes.

Second, we ran an automated text analysis (Humphreys and Wang, 2018) on the video
captions of the three largest content clusters to identify market codification in the form of
recurring semantic concepts and themes. Furthermore, we manually categorized videos and
meta data to grasp the essence of semantic concepts and themes within the clusters
(Niederer, 2016). In the content creator network, we manually coded channel categories, i.e.
types of content creators, and used colors to visually separate them. To ensure
trustworthiness, the authors formed an interpretive group, where each author coded the data
independently. Subsequently, constant comparison, both individual and within the
interpretive group, eliminated inconsistencies and established consent (Spiggle, 1994).

4.5 Query design data set 2
We collected the Instagram data set by running the InstaCrawlR scripts in RStudio
(Schröder, 2018). On Instagram, the keyword takes on the form of the hashtag. Therefore, we
translated the initial keyword into Instagram platform vernacular, that is, hashtag
vernacular (Rogers, 2019). We then performed a single hashtag query for
#sustainablefashion and downloaded a meta data set of 30,000 postings in April 2020 to
capture the “effects” of professional YouTube content on regular users on Instagram,
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manifesting in hashtagged co-codifications. The meta data set contained post ID, URL,
number of likes, post owner ID, caption and the date of the post. In contrast to professional
YouTube content, the content of the Instagram data set is mostly created by regular users
(Caliandro and Gandini, 2016, p. 142), illustrated by a likes mean of 73, a median of 23,
respectively.

4.6 Analysis data set 2
Similar to analysis of data set 1, we performed a networked content analysis. First, we
conducted computational analysis in the form of a hashtag co-occurrence analysis on the
Instagram data (Marres and Gerlitz, 2016). A hashtag co-occurrence analysis “allows for the
characterization of hashtags in terms of how they are networked associatively with other
hashtags” (Niederer, 2016, p. 106). In doing so, we extracted the co-occurring hashtags, e.g.
#slowfashion #ethicalfashion, from the meta data set by using a Python script. Using
Gephi, we calculated network statistics, encompassing average degree (frequency of
hashtags), modularity class algorithm (no edge weight, resolution 1.0) (Brandes et al., 2008)
and eigenvector centrality algorithm (100 iterations) (Benson, 2019). We used the modularity
class algorithm for color partition, and eigenvector centrality for node and label size – the
bigger the node and label size, the more important the hashtag in the network. To enhance
legibility, we filtered the network by setting the degree cutoff level to 115, resulting in 5.08%
node visibility, i.e. 2,352 nodes.

Second, we manually categorized the clusters from computational analysis to grasp the
essence of semantic concepts and themes within the clusters. Trustworthiness measures
were identical to the analysis of data set 1.

4.7 Cross-platform analysis
After having categorized semantic concepts and themes from both data sets, we performed a
comparative content analysis (Niederer, 2016; Rössler, 2012). Comparison of the semantic
concepts and themes from the automated text analysis of the YouTube data set and the
hashtag co-occurrence analysis of the Instagram data set unveiled cross-platform
codification dynamics. We identified recurring word combinations and stems as semantic
concepts and themes and compared them between both data sets. As such, cross-platform
analysis involved higher level interpretation and abstraction to grasp the essence and core
of cross-platform codification dynamics (Spiggle, 1994).

5. Findings
The findings of this study uncover how the enabling and constraining capacities of digital
technology and infrastructure not only facilitate platform-specific (non)human market
co-codification dynamics but also rhizomatous spread (Deleuze and Guattari, 1980) of these
market codifications across platforms, gluing together the constituent parts of the market
through sticky market webs of connection (Bennett, 2004). Consequently, (non)human
market co-codification dynamics render the corporate “walled gardens” (Dekker and
Wolfsberger, 2009) of digital market spaces fluid, and thus contribute to a homogenization
of the fashion market assemblage as a whole (DeLanda, 2016). Table 1 summarizes how
these capacities enable and constrain each (non)humanmarket co-codification dynamic.

In the following, we illustrate these (non)human market co-codification dynamics in
detail. First, we present interactional network dynamics between content creators and
recommender algorithms on YouTube. Second, we present interactional network dynamics
between regular users and hashtags on Instagram. Third, we outline the interrelations
between market codifications on both platforms, i.e. how (non)human market
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co-codifications, digital technologies and infrastructure create sticky market webs of
connection through shared market language and expressive networked content across the
trenches of platformized social media.

5.1 Market co-codification dynamics on YouTube
5.1.1 Curating, gatekeeping and catering. Our study finds two interrelated market
co-codification dynamics in (non)human market actors’ interactions on YouTube, affecting
visibility of content and agency of content creators – curating and gatekeeping, and catering. By
acting as curators and gatekeepers, algorithms, first, decide what kind of content is seen by
viewers and, second, only put the limelight on selected content creatorswho follow trending types

Table 1.
Enabling and
constraining

capacities of digital
technology and

infrastructure for
(non)human market

co-codification
dynamics

Dynamics Enabling Constraining

Curating and
gatekeeping

Algorithms enable thematic clustering
of trending content and topics,
increasing visibility by recommending
this content to users whose content
preferences match these themes

Algorithms constrain creative freedom
by limiting recommendations to
trending types of content, creating
market bubbles that entrap users in
closed loops of homogenous content

Catering Algorithms enable increased reach and
relations for users who follow the
content codex of algorithms

Algorithms constrain content creation
by “demanding” to obey the content
codex

Lexical codex
creating

Algorithms enable human market
actors to create and diffuse a
homogeneous lexical codex containing
semantic concepts and themes

Algorithms constrain content creators
to stick to established entries of the
lexical codex

Contextualizing Hashtags enable the definition of the
context of content, users to interact
with a certain social context and meta-
communication

Hashtags constrain the uniqueness of
content as users are required to tag
content with dominant hashtags related
to specific contexts

Self-categorizing Hashtags enable users to define the
semantic concepts and themes attached
and related to their content, framing a
discursive market space

Algorithmic hashtag recommendation
constrains users in defining semantic
concepts and themes by providing
predefined, prevalent concepts

Unifying Hashtags enable user unification
through their function as participatory
objects, i.e. umbrella terms under which
regular users can gather and contribute
content

Hashtags constrain user unification to
a small amount of or even a single
hashtag. Users that do not use these
hashtags are virtually excluded from
participation

Archiving Hashtags enable linking of content to
corresponding archival hashtag feeds
which gather and store all content
tagged with a specific hashtag, are
browsable and followable

Hashtags constrain linkage of content
only to those hashtag feeds that
function as content catalysts in terms
of visibility

Scaling Algorithms enable scaling of content
by leveraging trending hashtags,
leading to increased visibility.
Algorithms enable recommendation of
trending hashtags to users posting
with related hashtags

Algorithms constrain scaling only to
trending hashtags, i.e. hashtags
frequently used. Hashtags of small
interest groups remain obscure
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of content. This dynamic becomes apparent in the analysis of the most recommended videos.
Analysis reveals that most recommended videos are dominated by two content creator groups –
influencers and media outlets – promoting only a few influential genres. Figure 2 exhibits the
most relevant content creators.

Influencers make up the largest share of visibility (68.14%), underlining their dominant
voice (Rogers, 2019) in the sustainable fashion market assemblage on YouTube. Media
outlets are in second position with a 17.98% share of visibility. Other clusters are of minor
relevance, encompassing brands (3.47%), Non-Governmental organizations (NGOs) (2.52%),
education (2.21%), business service providers (1.58%), celebrities (1.89%), retailers (1.26%)
and events (0.95%). Interestingly, brands only play a subordinate role in the network despite
sustainability playing an increasingly important role in brand positioning and
communication (Han et al., 2017; Strähle and Gräff, 2017). Figure 2 also indicates a strong in-
group interrelation among influencers with only a few out-group relations, such as linkages
to media, models, celebrities or events. However, media outlets are more interconnected,
being related to almost all other creator groups in the network. These relations suggest
different behavioral patterns of users; for instance, some users primarily watch influencer
content while users watching media content are more open to a wider range of video content.
Moreover, the centrality and dominance of influencers in the network point to their know-
how of the content creation that appeals to both their target audience as well as algorithms
(Berman and Katona, 2020; Carah and Brodmerkel, 2020; Wu et al., 2019).

Figure 2.
Network of most
relevant content
creators on YouTube
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As such, nonhuman curating and gatekeeping triggers a related market co-codification
dynamic – catering. Catering necessitates human market actors to subscribe to a “content
codex,” containing content templates assembled of algorithm-pleasing genres, styles,
formats and factors (Cotter, 2019). These algorithmic content templates enable increased
content visibility, however, at the cost of creative freedom. Figure 3, in which the numbers
refer to distinct modularity clusters, visualizes the network of most successful and,
consequently, most visible videos, i.e. content templates, which the YouTube
recommendation system presents to users exploring sustainable fashion content.

The largest cluster (16.19%; nr. 18) is predominantly composed of influencers, presenting
styling tips and latest fashion trends. Only 1 out of the top 10 videos was created by a different
market actor – a retailer – yet, format-wise in an influencer-esque manner. The second-largest
cluster (15.15%; nr. 2) consists of editorial content, raising awareness for fast fashion-related
issues (e.g. production and consumption) as well as innovative ideas to overcome them. The third-
largest cluster (9.47%; nr. 23) is also composed of influencer content, mostly featuring sustainable
lifestyle how-tos. These main clusters are strongly related within but also among each other,
suggesting that user groups predominantly stay within a genre, whereas others are switching.
The fourth largest cluster (7.84%; nr. 6) solely contains technology, entertainment, design (TED)
Talks. This cluster is isolated from most clusters in the network. A considerable number of ties
only exists with cluster nr. 2 (awareness-raising editorials). Furthermore, the network also

Figure 3.
Network of most
visible videos on

YouTube
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contains promotional clips of fashionmodels (7.8%; nr. 21), fashion industry reports (4.63%; nr. 9)
and fashion shows (2.52%; nr. 5).

A holistic view of Figures 2 and 3 illuminates the interrelatedness and recursivity of
curating and gatekeeping, and catering. That is, both figures are the result of a recursive
interplay between content creators who excel in catering their content to the taste of
algorithms, algorithms which curate and gatekeep specific types of content and users, who
view and engage with curated content, providing behavioral data (e.g. view count and
duration or skipping behavior) as input for algorithmic calculation. For example, the
isolated position of cluster nr. 6 in Figure 3 indicates that users watching a TED Talk are
likely to be recommended to watch another TED Talk. In contrast, findings demonstrate a
higher interrelation between the influencer-dominated clusters nr. 18 and 23, creating cross-
cluster cyclical loops of influencer-driven advertorials, or editorials (Abidin, 2016).

Eventually, these interwoven, recursive market co-codification dynamics result in
homogenization and territorialization (DeLanda, 2016) of the sustainable fashion
assemblage on YouTube, constraining both the variety of content and cultural codes
presented to users. In other words, YouTube’s algorithmic workforce plugs related content
creators and their content into clouds of inherently homogeneous thematic parts that not
only relate to and connect with other parts of the market assemblage but, ultimately, also
form the market assemblage as a whole (DeLanda, 2016). Thus, algorithms constitute key
agents in this homogenization and territorialization of market assemblages, possibly
resulting in filter bubbles (Berman and Katona, 2020), or, in the present case, “market
bubbles” which entrap users (Seaver, 2019) in closed, cyclical loops of homogenous, market
territorializing content.

5.1.2 Lexical codex creation. Zooming into the actual content elicits another market co-
codification dynamic, affecting creation, diffusion and establishment of market language –
lexical codex creation. That is, human market actors create a codex, containing lexical entries
and semantic concepts and themes, to frame a universal sustainable fashion market
language. Figure 4 shows the most commonly used lexical semantic concepts and themes in
the largest cluster (nr. 18) of the network of most visible videos.

We identify two opposing narratives in this cluster, both dealing with a core concept of
fashion at first sight – dressing and styling tips. One narrative is framed by culturally coded

Figure 4.
Word cloud of most
frequent video title
phrases in Cluster 18
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rituals of fast fashion, promoting seasonal trends (e.g. “fashion trends” or “2020 fashion”) or
excessive consumption (e.g. “clothing haul” or “Zara haul”). The other narrative draws on a
semantic counter-concept, postulating deconsumption without sacrificing creative mix-and-
match outfit assembly – the “capsule wardrobe.” The capsule wardrobe is a small, well-
curated wardrobe, consisting of versatile, high-quality fashion pieces. As such, the semantic
concept of the “capsule wardrobe” decodes the fast fashion narrative at its core,
deterritorializing the identity of the fast fashion market assemblage while simultaneously
recodifying the market assemblage more sustainably. However, both narratives are located
within the influencer-dominated content cluster, causing not only an in-group
deterritorialization among influencers but also rendering the fashion market, which is
dominated by influencer-driven advertorials (Abidin, 2016), more fluid and open to change
dynamics.

Similar to cluster nr. 18, the third biggest cluster (nr. 23) is mainly composed of
influencer-generated content but, in contrast to cluster nr. 18, solely contains lexical entries
and semantic concepts and themes that aim to decode and recodify the market, i.e. raising
concerns about fast fashion consumption practices while suggesting sustainable
alternatives. The word cloud in Figure 5 represents the most commonly used lexical
semantic concepts and themes in cluster nr. 23.

The videos in cluster nr. 23 promote sustainable forms of consumption by adding
dissociative semantic concepts and themes (Wood, 2020) to the lexical codex, such as “low
waste” or “anti haul,” demarcating sustainable from fast fashion. Further semantic concepts,
e.g. “DITL” (day in the life) or instructive how-tos (e.g. “10 things”) guide users toward a
sustainable lifestyle and help them to resolve the dissonance between adhering to sustainable
principles while still gaining personal value through fashion consumption. These
codifications homogenize the sustainable consumption codex, territorializing the identity of
the sustainable fashion market assemblage. Yet, these codifications also constrain consumer
behavior by establishing a clear code of conduct for sustainable consumption. Influencers, for
instance, not only establish visibility for a specific market discourse but also foster the
“downward causal influence that wholes, once constituted, can exert on their parts”
(DeLanda, 2016, p. 18).

In contrast to the lifestyle- and consumption-oriented content of influencers in clusters nr.
18 and 23, cluster nr. 2 is mainly dominated by media (Figure 6). We find that media also
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contribute to lexical codex creation through investigative journalism that directly addresses
and dismantles environmentally damaging and unethical business practices of fast fashion
and campaigns for change.

Thereby, media partake in demarcating parts of the fashion market assemblage,
territorializing the identity of the sustainable fashion market assemblage while
simultaneously deterritorializing the identity of the fast fashion market assemblage. As
such, lexical codex creation not only homogenizes the sustainable fashion vernacular and
grammar (Gibbs et al., 2015) but also guides sustainable consumer behavior. However, this
homogenization simultaneously constrains content creators to well-established entries of the
lexical codex.

5.2 Market co-codification dynamics on Instagram
5.2.1 Self-categorizing and contextualizing. Analysis of (non)human market actors’
interactions on Instagram exhibits two interrelated market co-codification dynamics,
affecting framing and delimitation of discursive market space – self-categorizing and
contextualizing. Human market actors partake in market codification (DeLanda, 2016)
through self-categorization of their expressive content via hashtags as classification devices
(Caliandro and Gandini, 2016). Self-categorizing necessitates human market actors to
translate the lexical codex into hashtag vernacular (Gibbs et al., 2015), creating a platform-
specific lexical hashtag market codex that provides users with specific semantic contexts
and concepts for sustainable consumption. Figure 7 displays this hashtag market
vernacular, i.e. the network of hashtags co-occurring with #sustainablefashion, framing the
market assemblage on Instagram.

The purple cluster, which makes up the largest share of the network with 16.97%, is
framed by dissociative semantic concepts and themes (Wood, 2020) that oppose fast fashion.
The most important hashtag in this cluster as well as in the whole network is #slowfashion
(eigenvector centrality [evc] = 1.0), followed by #ethicalfashion (evc = 0.77), #sustainable
(evc = 0.69), #sustainability (evc = 0.69) and #ecofriendly (evc = 0.60). The second largest
cluster (green; 14.52%) is related to influencers, and dominant fashion content hashtags,
such as #fashion (evc = 0.88), #style (evc = 0.55), #stayhome (evc = 0.46), #fashionblogger
(evc = 0.42) and #love (0.39). Hashtags in this cluster illustrate so-called attention-seeking
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hashtags (Schöps et al., 2020) such as #love – the most often used hashtag (1.835 billion) and
#fashion – the third most common hashtag (812.7 million) on Instagram (Top-Hashtags.
com, 2021). The light blue cluster (11.67%) encompasses hashtags related to second-hand
clothing and thrift shopping styling tips, such as #ootd (evc = 0.60), #secondhand (evc =
0.42), #instafashion (evc = 0.36), #recycledfashion (evc = 0.35) and #thrift (evc = 0.29).
Closely related is the red cluster (10.72%), featuring vintage fashion hashtags, like #vintage
(evc = 0.58), #vintagestyle (evc = 0.41), #vintagefashion (evc = 0.38), #vintageclothing
(evc = 0.37) and #streetstyle (evc = 0.30). The orange cluster (7.65%) is about locally
produced, #handmade (evc = 0.67), #accessoires (evc = 0.20) such as #jewelry (evc = 0.18)
by small businesses (#smallbusiness; evc = 0.39). Sustainable fashion discourse further
includes #kidsfashion (evc = 0.19) (pink; 4.62%), as well as #diy (evc = 0.16), #sewing
(evc = 0.17) of #knitwear (evc =0.15) (yellow; 4.19%). The network also contains pop-up

Figure 7.
Network of hashtags

co-occurring with
#sustainablefashion

on Instagram

Sticky market
webs of

connection

93



clusters (grey), for instance, a COVID-19-related cluster (#stayathome, #socialdistancing), a
seasonal cluster (#spring2020, #420) and a location-based cluster (#australia).

As such, Figure 7 illustrates how self-categorizing and contextualizing relate to each other.
First, sustainability-conscious users categorize their sustainable fashion content as such by
using purpose-led and agenda-setting hashtags, for instance, #slowfashion or
#sustainability.

Purpose-led and agenda-setting hashtags function as accumulation, coordination and
distribution devices of specific information, debates or discourse (Rambukkana, 2015); in
other words, as market codification devices. The hashtag #slowfashion, for instance, serves
as a powerful umbrella hashtag for content that addresses environmental consumption
issues related to fast fashion, codifying sustainable fashion as a more ethical, considerate
and decelerated consumption approach to fashion.

Second, hashtags as nonhuman market actors contextualize content by functioning as
“markers through which both human and nonhuman actors categorize digital content
produced by themselves or by others” (Caliandro and Gandini, 2016, p. 22). Consequently,
hashtags enable market categorization and contextualization, framing “a hashtag-mediated
public sphere” (Rambukkana, 2015, p. 4) in the process. In our case, the hashtag public is
based on a common cause, agenda and vernacular and grammar (Gibbs et al., 2015) for
sustainable fashion. However, users who seek to contribute to the hashtag public are
constrained to predefined, prevalent semantic concepts.

5.2.2 Unifying, archiving and scaling.Meta-communication via hashtags unfolds further
market (re)codification dynamics, affecting reach and spread of networked content –
unifying, archiving and scaling. That is, purpose-led and agenda-setting hashtags unify users
in their quest for a more sustainable fashion market. As such, hashtags function as
“participatory objects” (Marres, 2012, p. 9), co-codification tools, respectively, for regular
users who seek to contribute expressive content to the sustainable fashion market
assemblage. However, hashtags not only drive user engagement but also actively codify the
sustainable fashion market assemblage through their affordance of archiving and scaling
content. Hashtags constitute archival devices, linking all posts that are tagged with a
specific hashtag to the respective hashtag feed in which all these posts are archived. The
more entries in the respective archive, the higher the scaling of the respective hashtag and,
consequently, the more visible. These dynamics illustrate folksonomic market co-
codification (Rambukkana, 2015) that territorializes the identity of the sustainable fashion
market assemblage on Instagram (Figure 7).

Similar to YouTube, digital technology and infrastructure on Instagram enables and
constrains (non)human market co-codification dynamics. On the one hand, users, who seek
to join networked marketplace conversations around #sustainablefashion, have to identify
the hashtag(s) under which users gather, archive their posts and leverage content visibility.
On the other hand, nonhuman actors can only catalyze visibility for trending user sociality
and content categorization. Thus, findings show that a hashtag is not only a mere
communicative, participatory marker in marketplace conversations but also “has a material
tangibility in itself as a distinctive contributor to an assemblage of human and nonhuman
agents that constitute the conversation” (Rambukkana, 2015, p. 55). Consequently, only
conjoined human-nonhuman interactions scale to and penetrate the market level.

5.3 Sticky market webs of connection
To metaphorically illustrate how these conjoined human-nonhuman interactions not only
penetrate the market level but also the corporate “walled gardens” (Dekker andWolfsberger,
2009) of digital market spaces, this study introduces the notion of sticky market webs of
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connection. Sticky market webs of connection imply that interactional dynamics between
(non)human market actors weave a rhizomatous network (Deleuze and Guattari, 1980) of
homogenized market codifications across platforms, rendering the concrete walls of
corporate “walled gardens” fluid and plastic. The findings of this study empirically show
how sticky market webs are spun by the influence of wholes on their parts through relations
of exteriority (DeLanda, 2016). Comparative analysis of YouTube and Instagram content
illuminates otherwise hidden sticky market webs of connections. Findings unveil how
regular user-generated content on Instagram mirrors the lexical codex created by
professional content creators on YouTube, manifesting in thematically consistent
codifications in terms of word combinations and stems.

The purple cluster of Figure 7 echoes the market codifications of clusters nr. 2 and 23 of
Figure 3 in hashtag vernacular and grammar (Gibbs et al., 2015), for instance, #slowfashion,
#sustainableliving or #ethicalfashion (cf. Figures 5, 6 and 7). In terms of content, these
codifications take form in awareness-raising editorials on YouTube, suggesting a
consumption codex to regular users on Instagram (Figure 7). Users appropriate and
internalize this suggested sustainable fashion codex through iterative content consumption
within closed, cyclical market loops. Consequently, (non)human market co-codification
results in an algorithmic market culture (Airoldi and Rokka, 2019) of homogenous,
territorialized codes, semantic concepts, themes, types of content and consumption
practices – a sticky market web of shared market language and expressive networked
content, weaving rhizomatous threads (Deleuze and Guattari, 1980) across the trenches of
platformized social media. For example, the light blue cluster in Figure 7 and the purple
cluster (nr. 18) in Figure 3 illustrates a connective silk thread between YouTube and
Instagram, both following the sustainable consumption codex of creative outfit assembly
through thrifted, second-hand clothes as well as a minimalistic, well-curated collection of
clothes – the capsule wardrobe. Accordingly, findings not only suggest that the YouTube
assemblage is “plugged into” (DeLanda, 2016, p. 10) the Instagram assemblage but also that
sticky market webs of connection protrude over the realms of YouTube and Instagram
through relations of exteriority to other digital marketplaces, illustrated by hashtags in the
red cluster of Figure 7 that link to second-hand clothing marketplaces, e.g. #depop or #etsy.

As such, sticky market webs constitute invisible, yet indissoluble connections between
(non)human market actors within digital ecologies. Human market actors cannot
disentangle themselves from these sticky webs but have to act in compliance with the
content codex of nonhuman market actors as well as the lexical codex of professional content
creators when seeking to partake in market codification. The translatability of the lexical
codex into platform-specific vernacular, for example, hashtags on Instagram, enables the
propagation of the cultural market codex of sustainable fashion across market actors and
platforms.

6. Discussion
This study illustrates how interactional dynamics between (non)human market actors
co-codify digital market assemblages, eventually spinning sticky market webs of
connections across social media platforms. The contribution of this study is threefold. First,
this study advances understanding of the enabling and constraining capacities of
technology by outlining the agentic role of digital technology and infrastructure in digital
markets. Second, this research offers empirical evidence of algorithmic market culture by
exemplifying how the interplay and interrelatedness of (non)human market actors weave
sticky market webs of connection across social media platforms. Third, this research offers
an increased understanding of user-driven market codification dynamics by illustrating
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how human market actors, both professional content creators and regular users, jam
markets by diffusing a recodified consumption codex across social media feeds, containing
semantic concepts, themes, agendas, topics and practices tied to markets.

The empirical study of the fashion market across two social media platforms illustrates
the agentic role of digital technology and infrastructure, enabling and constraining market
codification. In times when “powerful and unknowable information technologies [. . .]
‘produce’ everyday life” (Beer, 2009, p. 988), markets are not exempt from this production.
Digital media enable users to diffuse their expressive networked content into social media
feeds, and thereby leverage visibility of market codifying content (Cotter, 2019), potentially
changing markets. However, nonhuman market actors only enable increased content
visibility if “pleased” by content. Yet, viewers may benefit from algorithmic content curation
as personalized content recommendations aim to enhance their consumption experience
(Berman and Katona, 2020). As such, nonhuman actors not only shape markets but also
human market actors by producing “hierarchization and modulation of visibility,” i.e.
so-called “ranking cultures” (Rieder et al., 2018, p. 52). However, these dynamics also
illustrate the constraining capacities of digital technology and infrastructure. Algorithmic
curating and gatekeeping can create so-called filter bubbles (Berman and Katona, 2020),
narrowing content width and homogenizing content recommendations. Analysis of
YouTube data illustrates how viewers are entrapped in closed, cyclical loops of
homogeneous content – market bubbles. Moreover, this study empirically demonstrates
how algorithms actively lock the door for certain content creators, content, semantic
concepts, themes and topics. This is due to YouTube’s curation algorithm being a
collaborative filter that is based on collective user viewing behavior. Collaborative filter
algorithms appear to create filter bubbles more frequently (Hosanagar et al., 2014).
Correspondingly, algorithmic curating and gatekeeping may also constrain both content
creators and viewers – algorithms raise the filter bar for content creators while keeping
viewers in content bubbles. These content bubbles are mirrored in regular user-generated
content that is thematically aligned with the consumption codex put forth by (non)human
market actors. These dynamics may close markets to change, territorializing the market
assemblage. Moreover, the present study suggests that nonhuman actors are at least as
powerful, if not more powerful, than human actors and, therefore, act as an authoritative
instance in terms of enabling and constraining content visibility in digital markets.

This study further provides empirical evidence of an algorithmic market culture, offering
insights into synergistic (non)human market co-codification dynamics across social media.
Algorithmic market dynamics are inevitable when human market actors engage with social
media affordances, such as algorithms or hashtags. Social media potentially democratize
markets due to their egalitarian, inclusive and empowering nature (Schöps et al., 2020).
However, the “power of the algorithm” (Beer, 2013) forces users to master “playing the
visibility game” (Cotter, 2019) when seeking to be successful with their content. In other
words, users need to form a symbiotic relationship with technology, and excel in
understanding platform-specific algorithmic characteristics as well as catering content to
algorithms to increase their connectivity in the network (Berman and Katona, 2020). In
doing so, human market actors, moving on algorithmic territory (Rieder et al., 2018), need to
stick to the vernacular of the lexical market codex to maximize content visibility. Users, in
turn, find themselves, though mostly unconsciously, in “recursive relationships” (Airoldi
and Rokka, 2019, p. 3) with nonhuman actors, relying on algorithm-suggested “watch next”
videos. Eventually, these market dynamics result in an algorithmic market culture – closed,
cyclical market loops in which human market actors’ output becomes the input for
nonhuman market formation (Hallinan and Striphas, 2016). However, algorithmic market
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culture is not platform-bound but fluid and plastic in nature, forming relations of exteriority
(DeLanda, 2016) in the form of sticky market webs of connection across the corporate
“walled gardens” (Dekker and Wolfsberger, 2009) of social media platforms. In this study,
these webs are spun from YouTube to Instagram, resulting in a hashtag public of
#sustainablefashion. The #sustainablefashion public on Instagram constitutes a shared
market public in which interactions among human market actors are unified, archived and
scaled through nonhuman market interference, and participation is termed by co-
codifications of shared market language and expressive networked content. In contrast to
brand publics (Arvidsson and Caliandro, 2016), market actors in this study do not use
hashtags as a mere means to express their individual and personal perspectives on
sustainable fashion. Instead, market actors rather employ hashtags as unification devices,
enabling not only collaborative sustainable fashion market codification under the umbrella
of purpose-led and agenda-setting hashtags but also providing a universal market language
for cross-platform marketplace conversations. These dynamics illustrate how algorithmic
market culture manifests in cross-platform relations of exteriority in the form of sticky
market webs of connection that weave rhizomatous threads between the constituent
platformized parts of the social media fashion market assemblage as a whole (DeLanda,
2016; Deleuze and Guattari, 1980).

Finally, this research adds to prior research on user-driven market shaping (Dolbec and
Fischer, 2015; Scaraboto and Fischer, 2012; Schöps et al., 2020), illustrating how expressive
networked content (de)codes and transforms markets across social media. Content creators,
influencers and regular users collectively partake in this folksonomic market co-codification
(Rambukkana, 2015). In the case of sustainable fashion, influencers renegotiate their role as
intermediaries between the market and consumers, using their visibility to reposition
themselves as persona brands, and producing expressive networked content that documents
their liberation from excessive and unsustainable consumption behavior as well as the
dominant fashion market codex. Simultaneously, influencers claim new territory for their
renegotiated market role as educators and agenda-setters of sustainable fashion. As
educative intermediaries, they not only challenge the dominant market codex but also their
followers by providing clear codes of conduct, comprising a lexical codex of semantic
concepts and themes, for instance, “10 things I don’t buy anymore.” Such codes of conduct
disseminate the sustainable fashion agenda while playfully engaging users in the co-
codification of sustainable fashion via agenda-setting and purpose-led hashtags across
social media. This dissemination of the lexical codex of sustainable fashion into digital
fashion networks constitutes a form of culture jamming (Carducci, 2006; Wood, 2020) – in
the present study, market culture jamming. Following the content codex, and unified by
nonhuman market actors, i.e. hashtags, content creators, influencers and regular users
collectively engage in market culture jamming, leveraging the enabling capacities of digital
technology and infrastructure to disrupt and dismantle dominant semantic concepts and
themes of fast fashion while diffusing new, more sustainable semantic concepts and themes
across social media. However, influencers not only co-codify the market with downright
practical sustainable fashion consumption how-tos for regular users but also monetize their
visibility by creating new business models for themselves – (re)territorializing business
models that possibly make them independent from brands.

6.1 Practical implications
This study illustrates the importance of not only listening to and understanding human but
also nonhuman market actors, i.e. algorithms. Listening to and understanding these
nonhuman market actors enables managers to leverage the visibility of their
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communication. Adhering to the content codex, i.e. frequency, timing, caption and
description of publications and acquiring market vernacular is crucial for joining digital
marketplace conversations to maximize visibility. Content is only leveraged in terms of
diffusion and relevance when picked up by nonhuman market actors. Thus, this study
emphasizes the practical relevance of chiming content in the platform-specific meta-
discourse of markets.

The methodological approach of this research further offers an updated approach to
what is called “social listening” in practice, blending traditional social listening with a novel
form, namely, algorithmic listening. Social listening is defined as “an active process of
attending to, observing, interpreting and responding to a variety of stimuli through
mediated, electronic, and social channels” (Stewart and Arnold, 2018, p. 86). In times when
marketplace conversations increasingly take place in digital environments, social listening
constitutes a crucial endeavor for marketing managers, substantially improving their
understanding of consumers, clients and other crucial stakeholders. However, social
listening is mostly neglected in favor of social media analytics, i.e. tracking and improving
KPIs, such as reach, engagement and leads, in practice. We propose that these approaches
are by no means mutually exclusive but instead mutually beneficial. Social listening should
be the first step in designing market communication that aligns with audience sentiments.
The measurement of communication performance then is a matter of social media analytics.
In doing so, managers can create powerful closed feedback loops, assessing if they listened
attentively and correctly and, subsequently, adjust their communication. These closed
feedback loops consisting of a combination of qualitative and quantitative approaches
provide marketing managers with social intelligence for informed, considered decision-
making.

This study also illustrates the relevance of content creators and influencers on market
discourse. Criteria for market relevance should not solely focus on metrics, such as number
of followers or likes, but rather on the ability of market actors to occupy a discursive space
with an impactful market voice across platforms. Accordingly, managers can cooperate and
learn from content creators who actively partake in market codification by their expressive
networked content across social media. Collaborating with these market actors both
nonhuman and human may help managers not only to understand changing and emerging
digital market culture but also to successfully act in markets. Marketing managers can
profit from an increased understanding of digital market culture dynamics in two ways.
First, they can draw on digital methods to install a “trend spotting radar,” enabling them to
detect changing and emerging market understandings, and determine the degree to which
shifts in consumer behavior that are exemplified by content creators, resonate with the
“broad mass” across platforms. Second, they can seed lexical codes that address these
understandings and shifts in digital markets by themselves. Nurturing these seeded lexical
codes potentially enables marketing managers to occupy a discursive digital market space,
eventually generating leads.

6.2 Societal implications
This research illuminates two potential downsides of markets embedded in digital
technology and infrastructure. First, algorithms are prone to errors, potentially causing
reproduction of societal bias (Noble, 2018), polarization (Courtois et al., 2018) and social
fragmentation (Möller et al., 2018). Second, algorithms’ actual mechanisms remain in
obscurity. Yet, algorithms exert a form of posthegemonic power (Beer, 2009),
co-constructing reality. A technology of such ambivalent nature should face scrutiny on
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both an individual and a societal level. However, scholars question if a will to scrutinize
these mechanisms even exists (Deighton, 2019).

The societal issues caused by algorithms are foremost filter bubbles, limiting access to
information by narrowing and homogenizing content. As such, filter bubbles manipulate
social media users’ information infrastructure, entrapping them in sticky webs of
homogenous content, leading to one-sided perspectives and distorting societal opinion-,
taste- and preference-making (Roberge and Seyfert, 2016). Recent phenomena such as fake
news illustrate this pitfall of recommender systems. Using content relevance as a metric, a
recommender system might label an article as relevant due to its virality. However, the
actual content of that article – false/harmful or not – does not influence its circulation.

Social media users can enact countermeasures to escape filter bubbles. First, users can
use browsers that have built-in privacy tools, i.e. anti-trackers, or install equivalent browser
extensions, e.g. TrackMeNot (Howe and Nissenbaum, 2009). Anti-trackers minimize the
amount and transmission of digital traces to third parties and, subsequently, input data for
algorithmic bubble formation. Second, users should deliberately step outside their comfort
zone in their filter bubble, take the risk to their personalized content feed, set foot on the soil
of other platforms, put the algorithm-induced blinkers aside, and, consequently, open their
eyes to different angles on a certain issue (Amrollahi andMcBride, 2019).

On the corporate side, companies could offer the option to disable algorithmic services,
or, at least, render the algorithmic services transparent by integrating affordance that
displays the reason on which a recommendation has been generated for a specific user, e.g.
due to the content’s controversiality, or virality. To give impetus to social media companies,
legal regulations could be enforced, necessitating companies to disclose algorithmic
mechanisms, i.e. the coding. This would constitute a logical next step following the
obligation to mark sponsored content and ads as such.

6.3 Research implications
This study highlights the importance for research investigating digital markets and
dynamics to account not only for all relevant market actors, both human and nonhuman, in
the formation and shaping of markets but also digital infrastructure. Digital technology
renders markets as open-ended communicative processes constituted by the interplay of
(non)human market actors, constantly updating market meanings and practices mediated
by its affordances. Future research could therefore account for dynamics related to other
constitutive nonhuman market actors in the formation of markets, such as follow or
subscription dynamics, recommendation dynamics and ranking cultures (Rieder et al., 2018),
as well as dynamics related to automated nonhumanmarket agents, e.g. bots.

Moreover, this study stresses the necessity of cross-/multi-platform studies for future
research. Cross-platform analyses allow to eliminate the bias brought forth by single-
platform, API-led studies, i.e. to overcome being led by platform-specific “content organizing
elements” (Rogers, 2019, p. 209). As such, cross-platform analyses constitute a crucial
approach to minimize platform effects, i.e. “how the platform affects the content, be it its
presence or absence as well as its orderings” (Rogers, 2019, p. 220). Platform effects also hint
at a common issue in contemporary social media research – viewing social media as a
“collapsed category,” and thereby neglecting “important differences in the affordances of
different tools” (Costanza-Chock, 2014, p. 65).

Cross-platform analyses using digital methods allow to account for these differences.
More specifically, the networked content analysis of this study as a form of cross-platform
analysis enables scholars to account for both “how the platforms network content, and how
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content is ‘inter-linked, inter-liked and inter-hashtagged’” (Niederer, 2016, p. 125) across
platforms.

As such, cross-platform analyses bear immense methodological potential for future
research, enabling data triangulation, visualization of mechanisms that work on an individual
level in accumulated form – on a macrolevel – as well as content dissemination/circulation
dynamics. This study empirically demonstrates how concepts and themes circulate across
platforms. Likewise, research is needed across platforms, “following the medium” (Rogers,
2019) to acquire a holistic understanding of the phenomenon under investigation. With ever-
increasing complexity in digital technology, new and creative methodologies will help in the
future to fully account for the role of nonhuman entities and digital infrastructure in markets,
requiring close collaborations between marketing and information technology (IT)
departments – IT being a field marketing is increasingly dependent on. Moreover, the dubious
developments of increasing data access restrictions by closing application programming
interface (API) endpoints due to recent data breaches, e.g. the Cambridge Analytica scandal, as
well as opaqueness and unpredictability of digital technology leave researchers as one of the
last moral and responsible instances to shine light unto the dark corners of corporate “walled
gardens” through critical investigative research.
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