To read the full version of this content please select one of the options below:

Rethinking some of the rethinking of partial least squares

Joseph F. Hair (University of South Alabama, Mobile, Alabama, USA)
Marko Sarstedt (Otto-von-Guericke-University Magdeburg, Magdeburg, Germany and Monash University of Malaysia, Malaysia)
Christian M. Ringle (Hamburg University of Technology (TUHH), Hamburg, Germany and University of Waikato, New Zealand)

European Journal of Marketing

ISSN: 0309-0566

Article publication date: 27 March 2019

Issue publication date: 30 April 2019




Partial least squares structural equation modeling (PLS-SEM) is an important statistical technique in the toolbox of methods that researchers in marketing and other social sciences disciplines frequently use in their empirical analyses. The purpose of this paper is to shed light on several misconceptions that have emerged as a result of the proposed “new guidelines” for PLS-SEM. The authors discuss various aspects related to current debates on when or when not to use PLS-SEM, and which model evaluation metrics to apply. In addition, this paper summarizes several important methodological extensions of PLS-SEM researchers can use to improve the quality of their analyses, results and findings.


The paper merges literature from various disciplines, including marketing, strategic management, information systems, accounting and statistics, to present a state-of-the-art review of PLS-SEM. Based on these findings, the paper offers a point of orientation on how to consider and apply these latest developments when executing or assessing PLS-SEM-based research.


This paper offers guidance regarding situations that favor the use of PLS-SEM and discusses the need to consider certain model evaluation metrics. It also summarizes how to deal with endogeneity in PLS-SEM, and critically comments on the recent proposal to adjust PLS-SEM estimates to mimic common factor models that are the foundation of covariance-based SEM. Finally, this paper opposes characterizing common concepts and practices of PLS-SEM as “out-of-date” without providing well-substantiated alternatives and solutions.

Research limitations/implications

The paper paves the way for future discussions and suggests a way forward to reach consensus regarding situations that favor PLS-SEM use and its application.

Practical implications

This paper offers guidance on how to consider the latest methodological developments when executing or assessing PLS-SEM-based research.


This paper complements recently proposed “new guidelines” with the aim of offering a counter perspective on some strong claims made in the latest literature on PLS-SEM. It also clarifies some misconceptions regarding the application of PLS-SEM.



Even though this research does not use the statistical software SmartPLS (, Ringle acknowledges a financial interest in SmartPLS.


Hair, J.F., Sarstedt, M. and Ringle, C.M. (2019), "Rethinking some of the rethinking of partial least squares", European Journal of Marketing, Vol. 53 No. 4, pp. 566-584.



Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles