EFCC 2,1

2

Received 25 May 2020 Revised 12 June 2020 Accepted 24 June 2020

Phytosociological assessment and carbon stock estimation and valuation in the tropical dry deciduous forest of Bihar

Saroni Biswas Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India

Anirban Biswas School of Public Health, AIPH University, Bhubaneswar, India

Arabinda Das Department of Statistics, Acharya Prafulla Chandra College, New Barrackpore, India, and

Saon Banerjee Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India

Abstract

Purpose – This study aims to assess the biodiversity of the study area and estimate the carbon stock of two dry deciduous forest ranges of Banka Forest Division, Bihar, India.

Findings – Phytosociological analysis found total 18,888 [14,893 < 10 cm (diameter at breast height) dbh] and 2,855 (1,783 < 10 cm dbh) individuals at Banka and Bounsi range with basal area of 181,035.00 cm² and 32,743.76 cm², respectively. Importance value index was highest for Shorea robusta in both the ranges. Species diversity index and dominance index, 1.89 and 1.017 at Banka and 1.99 and 5.600 at Bounsi indicated the prevalence of biotic pressure. Decreased dbh and tree height resulted in a lowered growing stock volume as 59,140.40 cm³ ha⁻¹ (Banka) and 71,306.37 cm³ ha⁻¹ (Bounsi). Total C stock at Banka and Bounsi range was 51.8 t ha⁻¹ and 12.56 t ha⁻¹, respectively. A positive correlation between volume, total biomass and basal area of tree species with C stock was observed. R^2 value for Banka range was 0.9269 (volume-C stock), 1 (total biomass-C stock) and 0.647 (basal area-C stock). Strong positive correlation was also established at Bounsi range with R^2 value of 1. Considering the total forest area enumerated, C sequestration potential was

Ecofeminism and Climate Change Vol. 2 No. 1, 2021 pp. 2-16 Emerald Publishing Limited e-ISSN: 2633-4070 p-ISSN: 2633-4062 DOI 10.1108/FPCC-05-2020-0018

The authors are thankful to Department of Science and Technology for continuing research in broader areas. Department of Forest, Bihar is acknowledged for their support and technical guidance and the field staffs.

[©] Saroni Biswas, Anirban Biswas, Arabinda Das and Saon Banerjee. Published in *Ecofeminism and Climate Change*. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

about 194.25 t CO₂ (Banka) and 45.9 t CO₂ (Bounsi). The valuation of C stock was therefore US\$2,525.25 (Banka) and US\$596.70 (Bounsi).

Practical implications – The research found the potentiality of the study area to sequester carbon. However, for future, the degraded areas would require intervention of management strategies for restoration of degraded lands and protection of planted trees to increase the carbon sequestration potential of the area.

Originality/value – Present study is the first attempt to assess the phytosociology and estimate the regulatory services of forest with respect to biomass and carbon stock estimation for the Banka forest division of Bihar.

Keywords Species diversity, Crop volume, Biomass, Carbon stock

Paper type Research paper

Abbreviation

AGB = above ground biomass; BGB = below ground biomass; DBH = diameter at breast height; and IVI = importance value index.

1. Introduction

One of the richest terrestrial ecosystems is constituted in tropical forests supporting various life forms that indeed maintain high biodiversity (Shi and Singh, 2002). Eighty-six percent of the forest land is contributed by tropical forests in India while contribution of tropical dry deciduous forest and moist deciduous forest is 53% and 37%, respectively. Share of wet evergreen and semi-evergreen forests is only 10%. Tree species diversity is both complex and varies in different places in its structure and composition due to the prevalence of varying climate and topographical characteristics (Raturi, 2012). Depending upon the structure and composition of forests functionality is determined where forests act as carbon sink and have potential to sequester carbon (Lal and Singh, 2000). The phytosociological studies are significant to understand the structure, composition and distribution pattern of plant communities (Rout et al., 2018) and also to estimate the biomass of the area. Estimation of biomass eventually contributes to estimate C stock of an area (Fahey et al., 2010; Kushwaha et al., 2014; Salunkhe et al., 2016; Jhariya, 2017; Banik et al., 2018). Studies have depicted that carbon stocks are dependent on forest tree density, volume, above- and belowground biomass (Gibbs et al., 2007; Banik et al., 2018). The estimates of percentage indicate higher priority for tropical dry deciduous forests but limited studies have been conducted in these forests. Many of the forests are subjected to maltreatment and are degraded. Both biotic and edaphic factors have accelerated the process of degradation finally turning the rich dense forests into open degraded and scrub lands (Singh et al., 1991; Chaturyedi et al., 2011). Banka forest division is tropical dry deciduous forest with forest fringe villages and is under immense biotic pressure on forested land causing degradation of forest area leading to loss of biodiversity, habitat fragmentation, removal of top soil, etc. The loss of biodiversity in dry deciduous forest of tropics is comparable to tropical forests (Gentry, 1992).

Deforestation and land degradation causes loss of carbon stocks or in other words emits CO_2 , which estimates about 7%–14% of the total CO_2 emissions from anthropogenic activities (Harris *et al.*, 2012; Achard *et al.*, 2014). A decreasing trend in carbon stocks of tropical forests in India is noticed since 2003 (Sheikh *et al.*, 2011) with reduction in native forests at the rate of 3.5% annually (Puyravaud *et al.*, 2010). Similarly, the decrease in global forest area was noticed by 4.1 and 6.4 million ha annually and 3% of world's forest were disturbed by several biotic factors, namely, fire, pests, logging, etc. as reported by FAO (2012), while it was also reported by FAO (2006) that about 60% of forests are recovering.

Tropical dry deciduous forest of Bihar

3

Extensive studies were made by several researchers on the deforestation having impact on climate and what role is played by tropical forests in climate change mitigation (Masera *et al.*, 1995; De Jong *et al.*, 1999, 2000; Grace *et al.*, 2006). It was further estimated that 89% of total carbon stored in an ecosystem is lost due to deforestation that leads to loss of living biomass (Keith *et al.*, 2014). However, United Nations Framework Convention on Climate Change was set and estimation of forest carbon sinks, as well as sources, was in demand to inventories (UNFCCC, 1992). Major sources of carbon sink are the forests and are, thus, required to assess the total amount of sequestered carbon. Higher priority for adaptation and mitigation of climate change issues was set for conservation and protection of biological diversity and carbon sequestration (Diaz *et al.*, 2009). In recent past, under REDD+ programs for implementation of climate change mitigative policies, the developing countries are required to furnish baseline data for carbon stock estimation in forests (Saatchi *et al.*, 2011; Salimon *et al.*, 2011).

The estimated area for Sal forest in India is about 13 million hectares where in most cases the primary Sal forest is replaced by secondary regenerated Sal forest. The major cause for the shift was due to forest land degradation, over-exploitation, deforestation, grazing, change in land use pattern and several other biotic and anthropogenic activities (Deka *et al.*, 2012). As the species diversity and composition is dependent on potential regeneration of secondary forests (Ayyappan and Parthasarthy, 1999), the biomass of forest is also modified that has direct impact on carbon storage. Thus, forests being largest pool of biomass and carbon, different percent coverage has been estimated for aboveground, belowground, dead woody and litter compartment, which is about 234 Pg C, 62 Pg C, 42 Pg C and 23 Pg C, respectively with soil carbon pool of 398 Pg C (Kindermann et al., 2008). Therefore, considering the carbon pool although many studies were carried out by many researcher but limited studies are done in tropical dry deciduous forest in eastern zone of India. Few studies on biomass and carbon estimation shows total carbon pools of $52.59 \,\mathrm{Mg}$ ha⁻¹, 34.17 Mg ha⁻¹ and 33.61 Mg ha⁻¹ at Ailanthus excels – Cassia fistula forest, Acacia leucophloea – Balanites aegyptica forest and Anoegeissus pendula – Acacia leucophloea dominated forest, respectively, in North-east India (Singh et al., 2016). Biomass allometric equations were used by few researchers to estimate biomass and carbon stock in tropical forest of Tripura that recorded biomass in the range of 37.85 to 85.58 Mg ha⁻¹ (Majumdar et al., 2016). Forest of Manipur showed carbon stock in the range of 60.09 to 121.43 t ha⁻¹ (Thokchom and Yadaya, 2017) Similar studies at Garhwal Himalaya, India recorded 132.74 and 66.36 Mg ha⁻¹ of total biomass and carbon density, respectively (Mahato *et al.*, 2016).

In view to the above issues, as vegetation structure and diversity plays a major role in controlling various ecological processes (Gower *et al.*, 1992; Rout *et al.*, 2018), our study was concentrated to Banka Forest Division of Bihar state where traditional process of forest vegetation survey was followed to assess the phytosociology and estimate the regulatory function with respect to biomass and carbon stock estimation in the study area. In our present study, forest structure, distribution and carbon stock is estimated with its valuation in two forest ranges, namely, Banka and Bounsi range of Banka Forest Division, Bihar.

2. Materials and methods

2.1 Study area

The study was conducted in Banka and Bounsi Range with geographical location as latitude $24^{\circ}30'00''$ N to $25^{\circ}15'00''$ N, longitude $86^{\circ}30'00''$ E to $87^{\circ}15'00''$ E. The total area of Banka and Bounsi forest Range is 15,106.579 ha and 6,760.000 ha, respectively. The area receives rain during onset of southwest monsoon in the month of June scaling to 1,200 mm precipitation annually.

EFCC

2.1

2.2 Sampling plots Sampling plots were selected based on geo-referenced toposheets of 1:50000 scale. The study area was cropped and $15' \times 15'$ grid was subdivided into 144 sub-grids. Each sub-grid of size $1.25' \times 1.25'$ was further subdivided into to nine sub-grids of $25'' \times 25''$ using Arc GIS software.

2.3 Vegetation enumeration

Vegetation was enumerated following nested quadrat was laid in each sampling plots of $25'' \times 25''$ covering 0.5 ha. The phytosociological analysis was done to assess the structure of vegetation following Misra (1968) where diameter at breast height (DBH) in cm and tree height (in m) was measured. Frequency, density and abundance were recorded (Curtis and McIntosh, 1950). Relative values were calculated following Philips (1959). The importance value index (IVI) was estimated as sum of relative frequency, relative density and relative dominance of each species (Curtis, 1959). Shannon Weiner index (H') was used to calculate species diversity (Shannon and Wiener, 1963). The equations are as follows:

$$Frequency = \frac{No. of quadrats in which species appeared}{Total no. of quadrat studied} \times 100$$
 (1)

Relative frequency =
$$\frac{\text{Frequency of one species}}{\text{Total no. of frequency of all species}} \times 100$$
 (2)

$$Density = \frac{Total no. of individuals of a species in all quadrats}{Total no. of quadrat studied}$$
(3)

Relative density
$$=$$
 $\frac{\text{Density of the species}}{\text{Total density of all species}} \times 100$ (4)

$$Abundance = \frac{\text{Total no. of individuals of a species in all quadrats}}{\text{Total no. of quadrats in which teh species appears}}$$
(5)

$$Relative dominance = \frac{Total dominance (basal area) of the species in all quadrats}{Total dominance (basal area) of all species in all quadrats} \times 100$$
(6)

Species diversity
$$(H') = -\sum \left[\left(\frac{n_i}{N} \right) \log_2 \left(\frac{n_i}{N} \right) \right]$$
 (7)

where n_i is the total number of individuals of species i and N is the total number of individuals of all species.

2.4 Carbon stock estimation

Tree Basal Area (TBA) was calculated based upon the formula Area (A) = πr^2 , (8)

Tropical dry deciduous forest of Bihar

5

Therefore,

Tree basal area (TBA) =
$$\left(\frac{\text{DBH}}{200}\right)^2 \times 3.14$$
 (9)

where DBH = diameter at breast height in cm, $\pi = 3.14$ Tree volume was determined by using equation given below

Tree Volume(m³) =
$$\left(\frac{\text{DBH}}{200}\right)^2 \times 3.14 \times \left(\frac{\text{Height}}{3}\right)$$

Or Tree Volume = $\left(\frac{\text{TBA}}{3}\right)$ X Height (10)

Volume (m³tree⁻¹) of each tree in a sampling quadrat obtained is converted into the volume on hectare basis.

Above ground biomass (AGB) was calculated following IPCC (2003). Below ground biomass (BGB) was calculated following the equation given by Mokany *et al.* (2006). The carbon storage for each species was computed by multiplying total biomass with constant factor 0.50 (IPCC, 2006).

3. Results

3.1 Vegetation structure

The vegetation in both the ranges comprises of dominant tree species of *Shorea robusta* and its associates species, namely, *Madhuca indica, Diospyros melanoxylon, Butea monosperma, Terminalia tomentosa, Buchanania latifolia, Anoegeissus latifolia, Phylanthus emblica, Acacia catechu*, etc. Total numbers of individuals recorded are 18,888 individuals (14,893 individuals within 0–10 dbh class) and 2,855 individuals (1,783 within 0–10 dbh class) in Banka and Bounsi range, respectively. DBH class wise distribution of trees shows lesser number of trees within dbh class >10 cm, thus numbers of matured trees are much less in the study area. Total basal area in Banka and Bounsi range is 181,035.03 cm² and 32,743.76 cm², respectively. Extent of tree density at Banka (0.02–22.74) is higher than Bounsi (0.02–15.58) while the abundance of tree species ranges between 0.34–31.55 and 1.00–23.60, respectively (Tables 1 and 2).

IVI in both the ranges is highest for *Shorea robusta*. Top 10 tree species with respect to values of IVI at Banka range follows the trend as *Shorea robusta* (56.27) > *Acacia auriculiformis* (46.29) > *Madhuca indica* (36.09) > *Buchanania latifolia* (14.80) > *Butea monosperma* (13.26) > *Acacia catechu* (9.91) > *Terminalia tomentosa* (9.78) > *Cochlospermum religiosum* (8.84) > *Cassia siamea* (8.77) > *Eucalyptus globulus* (8.32) (Table 1). Similarly at Bounsi range the trend is *Shorea robusta* (55.88) > *Madhuca indica* (37.14) > *Acacia auriculiformis* (36.85) > *Butea monosperma* (31.17) > *Terminalia arjuna* (25.65) > *Terminalia tomentosa* (19.02) > *Eucalyptus globulus* (17.76) > *Diospyros melanoxylon* (9.62) > *Buchanania latifolia* (9.37) > *Acacia catechu* (9.91) (Table 2).

Tree species richness at Banka and Bounsi range is 32 and 25 that belongs to 18 and 15 families, respectively. No significant difference in species diversity index is observed (Banka – 1.89 and Bounsi – 1.99). Shannon Weiner index ranges between 0.001–0.370 in Banka range and 0.010–0.350 in Bounsi range (Tables 1 and 2). Dominance index of Bounsi range (5.600) is found to be much higher than Banka range (1.017). Based upon the phytosociological study, hierarchical clustering was done where the dendrogram in Figure 1

6

EFCC

2.1

Name of species	TNI	NQO	TQS	VEA	А	F	A:F	D	Basal area	IVI	H'	Tropical dr deciduou
Acacia auriculiformis	6,594	209	290	145.00	31.55	72.07	0.44	22.74	33,184.91	46.29	0.367	forest of Biha
Acacia catechu	524	104	185	92.50	5.04	56.22	0.09	2.83	4,391.59	9.91	0.099	iorest or Dina
Acacia nilotica	14	2	10	5.00	7.00	20.00	0.35	1.40	19.39	3.05	0.005	
Aegle marmelos	77	16	50	25.00	4.81	32.00	0.15	1.54	847.49	4.66	0.022	
Albizia lebbeck	24	8	25	12.50	3.00	32.00	0.09	0.96	212.91	3.75	0.008	
Anoegeissus latifolia	238	23	70	35.00	10.35	32.86	0.31	3.40	2,770.42	7.58	0.055	
Anona squamosal	1	3	5	2.50	0.33	60.00	0.01	0.20	46.34	5.30	0.001	
Artocarpus heterophyllus	1	1	5	2.50	1.00	20.00	0.05	0.20	9.33	1.89	0.001	
Azadirachta indica	34	22	90	45.00	1.55	24.44	0.06	0.38	499.14	2.71	0.011	
Buchanania latifolia	1,129	94	175	87.50	12.01	53.71	0.22	6.45	7,321.70	14.80	0.167	
Butea monosperma	715	74	165	82.50	9.66	44.85	0.22	4.33	9,582.81	13.26	0.123	
Cassia siamea	210	22	55	27.50	9.55	40.00	0.24	3.82	3,098.79	8.77	0.050	
Cochlospermum religiosum	196	34	80	40.00	5.76	42.50	0.14	2.45	5,228.45	8.84	0.047	
Dalbergia sisso	73	26	75	37.50	2.81	34.67	0.08	0.97	1,102.36	4.48	0.021	
Diospyros melanoxylon	404	101	240	120.00	4.00	42.08	0.10	1.68	2,090.03	6.34	0.082	
Eucalyptus globulus	104	12	25	12.50	8.67	48.00	0.18	4.16	462.13	8.32	0.028	
Ficus benghalensis	17	13	50	25.00	1.31	26.00	0.05	0.34	1,009.93	3.09	0.006	
Gmelin aarborea	25	9	35	17.50	2.78	25.71	0.11	0.71	152.77	2.95	0.009	
Holarrhena antidysenterica	31	2	10	5.00	15.50	20.00	0.78	3.10	97.15	4.73	0.010	
Madhuca indica	1,810	161	240	120.00	11.24	67.08	0.17	7.54	41,924.90	36.09	0.224	
Mangifera indica	20	10	40	20.00	2.00	25.00	0.08	0.50	1,222.30	3.27	0.007	
Mimusops elengi	12	2	5	2.50	6.00	40.00	0.15	2.40	40.05	5.72	0.005	
Phyllanthus emblica	190	19	45	22.50	10.00	42.22	0.24	4.22	1,068.34	8.22	0.046	
Schleichera oleosa	16	5	20	10.00	3.20	25.00	013	0.80	97.42		0.006	
Semecarpus anacardium	30	8	40	20.00	3.75	20.00	0.19	0.75	479.23		0.010	
Shorea robusta	5918	205	300	150.00	28.87	68.33	0.42	19.73	57,067.52		0.363	
Soyemida febrifuga	68	15	50	25.00	4.53	30.00	0.15	1.36	937.91	4.37	0.020	
Syzygium cumini	17	7	35	17.50	2.43	20.00	0.12	0.49	275.84	2.31	0.020	
Ferminalia arjuna	7	4	15	7.50	1.75	26.67	0.07	0.43	132.40		0.000	
Ferminalia bellerica	32	9	40	20.00	3.56	22.50	0.16	0.80	542.62		0.003	
Cerminalia tomentosa	356	54	115	57.50	6.59	46.96	0.10	3.10	5,115.94		0.074	
iziphus mauritiana	1	1	5	2.50	1.00	20.00	0.05	0.20	2.92	1.89	0.001	
`otal	18,888	1,275		1,295.00	221.59	1,180.88	5.72	104.02	181,035.03	300.00		(T) 1 1
ouu	10,000	1,210	2,000	1,200.00	221.00	1,100.00	0.12	101.02	101,000.00	000.00	1.000	Table
lotes: TNI = total num uadrat studied, VEA bundance frequency ra	= veg	etation	enun	neration	area, A	A_= abu	ndance	, F =	frequency			Phytosociologic attributes at Banl Ran

reveals two clusters at Banka range. Six tree species, namely, *Acacia catechu, Cochlospermum religiosum, Terminalia tomentosa, Acacia auriculiformis, Madhuca indica* and *Shorea robusta* form a Cluster 1 while other species have similarity among themselves to form another cluster. Cluster 1 includes six tree species of five families (Fabaceae, Bixaceae, Combretaceae, Sapotaceae and Dipterocarpaceae). Cluster 2 includes 26 tree species with 16 families (Anacardiaceae, Phyllanthaceae, Annonaceaea, Fabaceae, Sapotaceae, Rutaceae, Rhamnaceae, Moraceae, Combretaceae, Apocyanaceae, Mimosaceae, Myrtaceae, Lamiaceae, Ebenaceae, Sapindaceae and Meliaceae). Similarly dendrogram in Figure 2 shows three clusters at Bounsi range. Cluster 1 is formed with two species, namely, *Acacia auriculiformis* and *Butea monosperma* belonging to Fabaceae family. Cluster 2 also includes two species, namely, *Madhuca indica* and *Shorea robusta* belonging to Sapotaceae and Dipterocarpaceae family, respectively. Rest of the tree species have similar association and forms another Cluster 3. Cluster 3 includes 21 tree species belonging to 13 families (Anacardiaceae, Bixaceae, Combretaceae, Fabaceae, Fabaceae, Lamiaceae, Moraceae, Moraceae, Ebenaceae, Fabaceae, Rutaceae, Moraceae, Moraceae, Combretaceae, Fabaceae, Lamiaceae, Moraceae, Combretaceae, Fabaceae, Lamiaceae, Moraceae, Combretaceae, Ebenaceae, Fabaceae, Lamiaceae, Moraceae, Moraceae, Fabaceae, Bixaceae, Combretaceae, Ebenaceae, Fabaceae, Lamiaceae, Moraceae, Moraceae, Moraceae, Bixaceae, Combretaceae, Rutaceae, Rutaceae, Lamiaceae, Moraceae, Moraceae, Fabaceae, Fabaceae, Lamiaceae, Moraceae, Moraceae, Moraceae, Moraceae, Meliaceae, Malvaceae, Rutaceae, Rutaceae, Rutaceae, Lamiaceae, Moraceae, Moraceae, Moraceae, Meliaceae, Meliaceae, Rutaceae, Rutaceae, Rutaceae, Rutaceae, Iamiaceae, Moraceae, Moraceae

EFCC 2,1	Name of species	TNI	NQO	TQS	VEA	А	F	A:F	D	Basal area	IVI	H^{\prime}
2,1	Acacia auriculiformis	779	33	50	25.00	23.61	66.00	0.36	15.58	3,690.50	36.85	0.353
	Acacia catechu	80	30	75	37.50	2.67	40.00	0.07	1.07	521.33	6.99	0.099
	Aegle marmelos	3	3	15	7.50	1.00	20.00	0.05	0.20	4.46	2.31	0.007
	Albizia lebbeck	2	1	5	2.50	2.00	20.00	0.10	0.40	196.56	3.14	0.005
	Anogeissus latifolia	9	5	20	10.00	1.80	25.00	0.07	0.45	188.46	3.69	0.018
8	Azadirachta indica	12	9	30	15.00	1.33	30.00	0.04	0.40	137.73	3.98	0.023
0	_ Bombax ceiba	10	4	15	7.50	2.50	26.67	0.09	0.67	139.93	3.97	0.019
	Buchanania latifolia	54	6	15	7.50	9.00	40.00	0.23	3.60	301.55	9.37	0.074
	Butea monosperma	347	29	45	22.50	11.97	64.44	0.19	7.71	4,993.43	31.17	0.253
	Casiasiamea	6	2	10	5.00	3.00	20.00	0.15	0.60	38.85	2.90	0.013
	Cochlospermum religiosum	27	8	20	10.00	3.38	40.00	0.08	1.35	194.69	6.33	0.043
	Diospyros melanoxylon	45	17	25	12.50	2.65	68.00	0.04	1.80	152.18	9.62	0.064
	Eucalyptus globulus	43	5	10	5.00	8.60	50.00	0.17	4.30	2,436.21	17.76	0.062
	Ficus benghalensis	3	2	10	5.00	1.50	20.00	0.08	0.30	322.09	3.40	0.007
	Ficus racemose	3	1	5	2.50	3.00	20.00	0.15	0.60	8.46	2.80	0.007
	Madhuca indica	365	34	55	27.50	10.74	61.82	0.17	6.64	7,459.83	37.14	0.260
	Mangifera indica	3	2	10	5.00	1.50	20.00	0.08	0.30	94.17	2.70	0.007
	Schleichera oleosa	3	1	5	2.50	3.00	20.00	0.15	0.60	47.89	2.92	0.007
	Semecarpusanacardium	23	4	15	7.50	5.75	26.67	0.22	1.53	51.02	4.74	0.038
	Shorearobusta	775	36	50	25.00	21.53	72.00	0.30	15.50	9,752.37	55.88	0.352
	Syzygium cumini	1	1	5	2.50	1.00	20.00	0.05	0.20	116.28	2.65	0.003
	Tectona grandis	1	1	5	2.50	1.00	20.00	0.05	0.20	3.23	2.30	0.003
	Terminalia arjuna	59	5	5	2.50	11.80	100.00	0.12	11.80	374.53	25.65	0.079
	Terminalia tomentosa	197	19	30	15.00	10.37	63.33	0.16	6.57	1,505.01	19.02	0.182
	Ziziphus mauritiana	5	2	10	5.00	2.50	20.00	0.13	0.50	13.00	2.70	0.011
Table 2.	Total	2,855	260	540	270.00	147.18	973.93	3.29	82.86	32,743.76	299.99	1.990

Phytosociological attributes at Bounsi range **Notes:** TNI = total number of individuals, NQO = number of quadrat occurrence, TQS = total number of quadrat studied, VEA = vegetation enumeration area, A = abundance, F = frequency (%), A:F = abundance frequency ratio, D = density, BA = basal area (cm²), IVI = importance value index

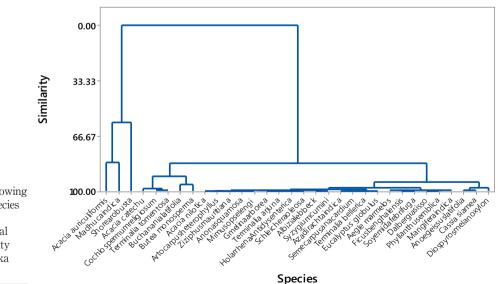
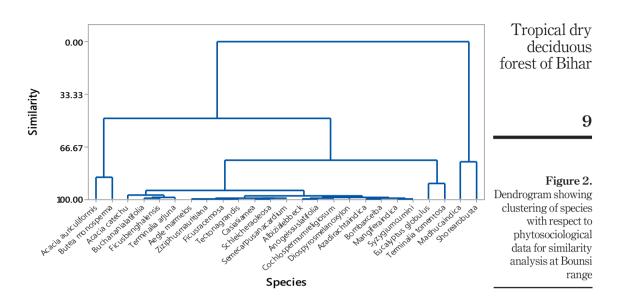



Figure 1.

Dendrogram showing clustering of species with respect to phytosociological data for similarity analysis at Banka range

3.2 Growing stock

As the forest is under successional stage and growing stock estimation reveals most of the trees (immature) fall under dbh class 0–10 cm, therefore total carbon stock estimation is determined for all dbh classes. The carbon stock estimation is limited to live tree biomass in our study. Height of trees in all dbh class ranges between 1.0–14 m and 1.5–15 m in Banka and Bounsi range, respectively. The total volume of all the trees enumerated is recorded as 59,140.40 and 71,306.37 cm³ ha⁻¹ in Banka and Bounsi range. Tree height and dbh is one of the major factors for contributing to large amount of stock volume. Although tree height for both the ranges are almost same, the number of trees above 10 cm dbh is more in Bounsi range (37%) than compared to Banka range (26%). Tree density at Banka is higher than Bounsi but larger number of trees in higher dbh class has contributed to higher volume of growing stock at Bounsi range. In both the ranges, volume of *Shorea robusta* is higher than other species. At Banka range the top five tree species contribution to volume follows the pattern as *Shorea robusta* (9,520.00 cm³ ha⁻¹) > *Madhuca indica* (9,001.56 cm³/ha) > *Mangifera indica* (5,946.00 cm³ ha⁻¹) > *Colchlospermum religiosum* (4,492.38 cm³ ha⁻¹) > *Acacia auriculiformis* (4,199.68 cm³ ha⁻¹). Similarly, at Bounsi range the pattern is *Eucalyptus globulus* (32,893.80 cm³ ha⁻¹) > *Shorea robusta* (13,789.00 cm³ ha⁻¹) > *Madhuca indica* (6,024.11 cm³ ha⁻¹) > *Butea monosperma* (4,849.29 cm³ ha⁻¹) > *Acacia auriculiformis* (2,584.16 cm³ ha⁻¹) (Tables 3 and 4).

The pattern of AGB for top five tree species at Banka range is *Shorea robusta* > *Madhuca indica* > *Mangifera indica* > *Terminalia bellerica* > *Acacia auriculiformis*. AGB of all the tree species at Banka and Bounsi is 2,196.29257 and 75.312 kg ha⁻¹, respectively. Likewise, BGB is recorded as 15.008 and 17.698 kg ha⁻¹, respectively for Banka and Bounsi range, therefore total biomass of two ranges are 78.875 and 93.011 kg ha⁻¹, respectively.

Total C stock at Banka and Bounsi range is 39.44 and 46.51 kg ha⁻¹, respectively where highest C stock is recorded for *Shorea robusta* in both the ranges (Banka – 7.65 kg ha⁻¹; Bounsi – 9.40 kg ha⁻¹) (Tables 3 and 4). Depending upon the growing stock and C stock, clustering of tree species was done and dendrogram (Figures 3 and 4) shows three clusters in both the ranges, which are different from the pattern for phytosociology. It was recorded that in Banka range, *Madhuca indica* and *Shorea robusta* formed Cluster 1 (Sapotaceae and

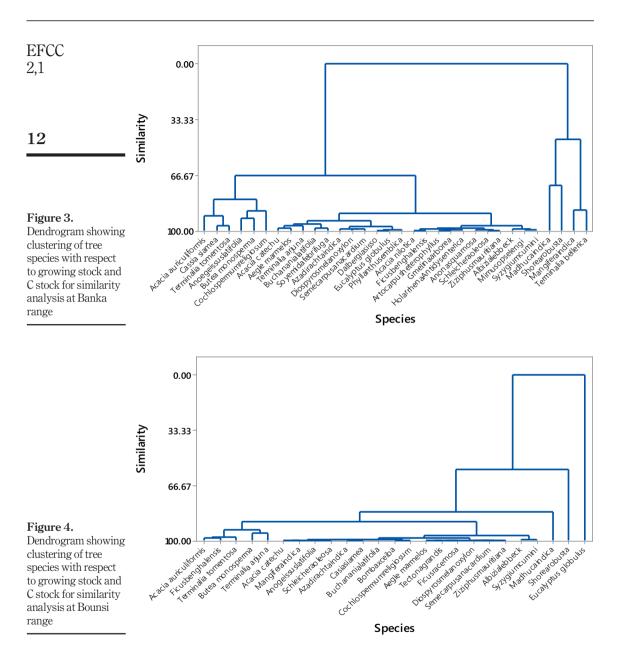
EFCC 2,1	Name of species	SG (g cm ⁻³)	SV (cm ³ ha ⁻¹)	AGB (g ha ⁻¹)	BGB (g ha ⁻¹)	TB (g ha ⁻¹)	C (kg Cha ⁻¹)	CO_2 equivalent (kg CO_2 ha ⁻¹)
	Acacia auriculiformis	0.600	4,199.68	3,968.69	932.64	4,901.34	2.45	8.99
	Acacia catechu	0.875	857.25	1,181.40	277.63	1,459.03	0.73	2.68
	Acacia nilotica	0.780	42.80	52.58	12.36	64.94	0.03	0.12
	Aegle marmelos	0.845	748.64	996.35	234.14	1,230.49	0.62	2.26
10	Albizia lebbeck	0.953	314.16	471.55	110.81	582.36	0.29	1.07
10	Anoegeissus latifolia	0.828	2,006.97	2,617.29	615.06	3,232.35	1.62	5.93
	Anona squamosa	0.619	234.80	228.91	53.79	282.71	0.14	0.52
	Artocarpus heterophyllus	0.600	120.40	113.78	26.74	140.52	0.07	0.26
	Azadirachtaindica	1.086	384.24	657.23	154.45	811.68	0.41	1.49
	Buchananialatifolia	0.458	1,455.44	1,049.88	246.72	1,296.60	0.65	2.38
	Butea monosperma	0.465	2,196.56	1,608.70	378.05	1,986.75	0.99	3.65
	Cassia siamea	0.746	2,966.11	3,485.03	818.98	4,304.01	2.15	7.90
	Cochlospermum religiosum	0.270	4,492.38	1,910.38	448.94	2,359.32	1.18	4.33
	Dalbergia sisso	0.669	769.49	810.80	190.54	1,001.33	0.50	1.84
	Diospyros melanoxylon	0.678	630.48	673.26	158.22	831.48	0.42	1.53
	Eucalyptus globulus	0.676	735.84	783.45	184.11	967.56	0.48	1.78
	Ficus benghalensis	0.494	86.56	67.35	15.83	83.17	0.04	0.15
	Gmelinaarborea	0.432	166.51	113.30	26.62	139.92	0.07	0.26
	Holarrhena antidysenterica	0.445	201.00	140.88	33.11	173.98	0.09	0.32
	Madhuca indica	0.619	9,001.56	8,775.84	2062.32	10,838.17	5.42	19.89
	Mangifera indica	0.750	5,945.75	7,023.42	1,650.50	8,673.92	4.34	15.92
	Mimusops elengi	1.000	208.40	328.23	77.13	405.36	0.20	0.74
	Phyllanthus emblica	0.619	847.42	826.17	194.15	1,020.32	0.51	1.87
	Schleichera oleosa	1.010	145.95	232.17	54.56	286.73	0.14	0.53
	Semecarpus anacardium	0.991	508.50	793.68	186.51	980.19	0.49	1.80
	Shorea robusta	0.700	11,239.81	12,391.89	2,912.10	15,303.99	7.65	28.08
	Soyemida febrifuga	0.650	1,187.24	1,215.44	285.63	1,501.06	0.75	2.75
	Syzygium cumini	0.669	302.23	318.45	74.84	393.29	0.20	0.72
	Terminalia arjuna	1.189	767.33	1,436.97	337.69	1,774.65	0.89	3.26
	Terminalia bellerica	1.169	3,424.00	6,304.18	1,481.48	7,785.67	3.89	14.29
	Terminalia tomentosa	0.694	2,824.49	3,087.31	725.52	3,812.82	1.91	7.00
	Ziziphus mauritiana	1.000	128.40	202.23	47.52	249.75	0.12	0.46
Table 3.	Total	23.58	59,140.40	2,196,292.57	15,008.69	78,875.48	39.44	144.74
Carbon stock estimation at Bank range	Notes: SG – specific gra below ground biomass (g (kg CO ₂ /ha)	vity (g cm g ha ⁻¹); T	^{–3}); V – volt B – total bi	ume (cm ³ ha ⁻³ omass (g ha ⁻	¹); ABG – a ¹); C – car	bove grour bon stock (nd biomass ((kgC ha ⁻¹);	g ha ⁻¹); BGB – CO ₂ equivalent

Dipterocarpaceae family, respectively) while *Mangifera indica* and *Terminalia bellerica* formed Cluster 2 (Anacardeaceae and Combretaceae family, respectively). Rest of the tree species have similar association and formed cluster 3 that includes 28 species belonging to 17 families (Anacardiaceae, Annonaceae, Apocyanaceae, Bixaceae, Combretaceae, Ebenaceae, Fabaceae, Lamiaceae, Meliaceae, Mimosaceae, Moraceae, Myrtaceae, Phyllanthaceae, Rhamnaceae, Rutaceae, Sapindaceae and Sapotaceae). Similarly, in Bounsi range, *Eycalyptus globulus* and *Shorea robusta* formed two clusters, namely, Clusters 1 and 2, respectively and rest of the tree species formed cluster 3 that includes 23 tree species and 14 families (Anacardiaceae, Bixaceae, Combretaceae, Ebenaceae, Fabaceae, Lamiaceae, Meliaceae, Moraceae, Myrtaceae, Rhamnaceae, Rutaceae, Sapindaceae and Sapotaceae).

4. Discussions

4.1 Forest structure

Abundance: frequency ratio recorded for Banka and Bounsi are 0.187 and 0.151, respectively depicting cluster distribution of trees (Figures 1 and 2). Although IVI is highest for *Shorea*


Acacia auriculiformis 0.600 $2,584.16$ $2,442.03$ 573.88 $3,015.91$ 1.51 5.53 Acacia catechu 0.875 2264.88 365.04 85.78 450.82 0.23 0.83 Aegle marmelos 0.845 5.87 7.81 1.83 9.64 0.00 0.02 Albiai lebbeck 0.953 627.20 941.41 221.23 $1,162.64$ 0.58 2.13 Anogeissus latifolia 0.828 316.00 412.10 96.84 508.94 0.25 0.93 Azadirachta indica 1.086 182.07 311.42 73.18 384.60 0.19 0.71 Bombax ceiba 0.329 355.20 184.06 43.25 227.31 0.11 0.42 Buchanania latifolia 0.458 546.13 393.95 92.58 486.53 0.24 0.89 Butea monosperma 0.465 $4.849.29$ 3551.50 834.60 $4.386.10$ 2.19 8.04 Casia siamea 0.746 227.80 267.65 62.90 330.55 0.17 0.61 Diospyros melanoxylon 0.678 83.60 89.27 20.98 110.25 0.06 0.20 Eucalyptus globulus 0.676 $32.893.80$ $35,022.03$ $8.230.18$ $43.252.21$ 21.63 79.29 Ficus racemosa 0.619 33.60 32.76 7.70 40.46 002 0.07 Madhucaindica 0.619 $6,024.11$ 587.35 $1,380.17$	Name of species	SG (g cm ⁻³)	$\frac{\text{SV}}{(\text{cm}^3\text{ha}^{-1})}$	AGB (g ha ⁻¹)	BGB (g ha ⁻¹)	TB (g ha ⁻¹)	C (kg Cha ⁻¹)	$\begin{array}{c} \text{CO}_2 \text{ equivalent} \\ \text{(kg CO}_2 \text{ ha}^{-1} \text{)} \end{array}$	Tropical dry deciduous
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Acacia auriculiformis	0.600	2,584.16	2,442.03	573.88	3,015.91	1.51	5.53	forest of Bihar
Albizia lebbeck0.953627.20941.41221.231,162.640.582.13Anogeissus latifolia0.828316.00412.1096.84508.940.250.93Azadirachta indica1.086182.07311.4273.18384.600.190.71Bombax ceiba0.329355.20184.0643.25227.310.110.42Buchanania latifolia0.458546.13393.9592.58486.530.240.89Butea monosperma0.4654,849.293,551.50834.604,386.102.198.04Casia siamea0.746227.80267.6562.90330.550.170.61Cochlospermum religiosum0.270422.20179.5442.19221.730.110.41Diospyros melanoxylon0.67883.6089.2720.98110.250.060.20Eucalyptus globulus0.67632,893.8035.022.038,230.1843,252.2121.6379.29Ficus racemosa0.61933.6032.767.7040.460.020.07Madhucaindica0.6196,024.115,873.051,380.177,253.223.6313.30Mangifera indica0.750311.40367.8486.44454.280.230.83Schleichera oleosa1.010267.20425.0599.89524.930.260.96Semecarpus anacardium0.99159.8793.4421.96115.400.060.21 <td>Acacia catechu</td> <td>0.875</td> <td>264.88</td> <td>365.04</td> <td>85.78</td> <td>450.82</td> <td>0.23</td> <td>0.83</td> <td></td>	Acacia catechu	0.875	264.88	365.04	85.78	450.82	0.23	0.83	
Anogeissus latifolia0.828316.00412.1096.84508.940.250.93Azadirachta indica1.086182.07311.4273.18384.600.190.71Bombax ceiba0.329355.20184.0643.25227.310.110.42Buchanania latifolia0.458546.13393.9592.58486.530.240.89Butea monosperma0.4654,849.293,551.50834.604,386.102.198.04Casia siamea0.746227.80267.6562.90330.550.170.61Cochlospermum religiosum0.270422.20179.5442.19221.730.110.41Diospyros melanoxylon0.67883.6089.2720.98110.250.060.20Eucalyptus globulus0.67632,893.8035,022.038,230.1843,252.2121.6379.29Ficus racemosa0.61933.6032.767.7040.460.020.07Madhucaindica0.6196,024.115,873.051,380.177,253.223.6313.30Mangifera indica0.750311.40367.8486.44454.280.230.83Schleichera oleosa1.010267.20425.0599.89524.930.260.96Semecarpus anacardium0.99159.8793.4421.96115.400.060.21Shorea robusta0.70013,789.0015,202.373,572.5618,774.939.3934.4	Aegle marmelos	0.845	5.87	7.81	1.83	9.64	0.00	0.02	
Azadirachta indica1.086182.07311.4273.18384.600.190.71Bombax ceiba0.329355.20184.0643.25227.310.110.42Buchanania latifolia0.458546.13393.9592.58486.530.240.89Butea monosperma0.4654,849.293,551.50834.604,386.102.198.04Casia siamea0.746227.80267.6562.90330.550.170.61Cochlospermum religiosum0.270422.20179.5442.19221.730.110.41Diospyros melanoxylon0.67883.6089.2720.98110.250.060.20Eucalyptus globulus0.67632,893.8035,022.038,230.1843,252.2121.6379.29Ficus nacemosa0.61933.6032.767.7040.460.020.07Madhucaindica0.6196,024.115,873.051,380.177,253.223.6313.30Mangifera indica0.750311.40367.8486.44454.280.230.83Schleichera oleosa1.010267.20425.0599.89524.930.260.96Semecarpus anacardium0.99159.8793.4421.96115.400.060.21Shorea robusta0.70013,789.0015,202.373,572.5618,774.939.3934.42Syzgium cumini0.6691,000.001,053.68247.611,301.290.652.	Albizia lebbeck	0.953	627.20	941.41	221.23	1,162.64	0.58	2.13	
Bombax ceiba 0.329 355.20 184.06 43.25 227.31 0.11 0.42 Buchanania latifolia 0.458 546.13 393.95 92.58 486.53 0.24 0.89 Butea monosperma 0.465 $4,849.29$ $3,551.50$ 834.60 $4,386.10$ 2.19 8.04 Casia siamea 0.746 227.80 267.65 62.90 330.55 0.17 0.61 Cochlospermum religiosum 0.270 422.20 179.54 42.19 221.73 0.11 0.41 Diospyros melanoxylon 0.678 83.60 89.27 20.98 110.25 0.06 0.20 Eucalyptus globulus 0.676 $32,893.80$ $35,022.03$ $8,230.18$ $43,252.21$ 21.63 79.29 Ficus benghalensis 0.494 $2,474.00$ $1,924.90$ 452.35 $2,377.25$ 1.19 4.36 Ficus racemosa 0.619 33.60 32.76 7.70 40.46 0.02 0.07 Madnucaindica 0.619 $6,024.11$ $5,873.05$ $1,380.17$ $7,253.22$ 3.63 13.30 Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 $13,789.00$ $15,202.37$ </td <td>Anogeissus latifolia</td> <td>0.828</td> <td>316.00</td> <td>412.10</td> <td>96.84</td> <td>508.94</td> <td>0.25</td> <td>0.93</td> <td>11</td>	Anogeissus latifolia	0.828	316.00	412.10	96.84	508.94	0.25	0.93	11
Buchanania latifolia 0.458 546.13 393.95 92.58 486.53 0.24 0.89 Butea monosperma 0.465 $4,849.29$ $3,551.50$ 834.60 $4,386.10$ 2.19 8.04 Casia siamea 0.746 227.80 267.65 62.90 330.55 0.17 0.61 Cochospermum religiosum 0.270 422.20 179.54 42.19 221.73 0.11 0.41 Diospyros melanoxylon 0.678 83.60 89.27 20.98 110.25 0.06 0.20 Eucalybus globulus 0.676 $32,893.80$ $35,022.03$ $8,230.18$ $43,252.21$ 21.63 79.29 Ficus benghalensis 0.494 $2,474.00$ $1,924.90$ 452.35 $2,377.25$ 1.19 4.36 Ficus racemosa 0.619 $6,024.11$ $5,873.05$ $1,380.17$ $7,253.22$ 3.63 13.30 Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 $13,789.00$ $15,202.37$ $3,572.56$ $18,774.93$ 9.39 34.42 Syzgium cumini 0.669 $1,000.00$ $1,053.68$ 247.61 $1,301.29$ 0.65 2.39 Tectona grandis 0.577 14.00	Azadirachta indica	1.086	182.07	311.42	73.18	384.60	0.19	0.71	11
Butea monosperma0.4654,849.293,551.50834.604,386.102.198.04Casia siamea0.746227.80267.6562.90330.550.170.61Cochlospermum religiosum0.270422.20179.5442.19221.730.110.41Diospyros melanoxylon0.67883.6089.2720.98110.250.060.20Eucalyptus globulus0.67632,893.8035,022.038,230.1843,252.2121.6379.29Ficus benghalensis0.4942,474.001,924.90452.352,377.251.194.36Ficus racemosa0.6196,024.115,873.051,380.177,253.223.6313.30Mangifera indica0.6196,024.115,873.051,380.177,253.223.6313.30Schleichera oleosa1.010267.20425.0599.89524.930.260.96Semecarpus anacardium0.99159.8793.4421.96115.400.060.21Shorea robusta0.70013,789.0015,202.373,572.5618,774.939.3934.42Syzgium cumini0.6691,000.001,053.68247.611,301.290.652.39Tertinalia arjuna1.1892,298.804,304.911,011.655,316.562.669.75Tertinalia tomentosa0.6941,63.201,781.89418.742,206.31.104.03Ziziphus mauritiana1.00046.0072.45	Bombax ceiba	0.329	355.20	184.06	43.25	227.31	0.11	0.42	
Casia siama 0.746 227.80 267.65 62.90 330.55 0.17 0.61 Cochlospermum religiosum 0.270 422.20 179.54 42.19 221.73 0.11 0.41 Diospyros melanoxylon 0.678 83.60 89.27 20.98 110.25 0.06 0.20 Eucalyptus globulus 0.676 $32,893.80$ $35,022.03$ $8,230.18$ $43,252.21$ 21.63 79.29 Ficus benghalensis 0.494 $2,474.00$ $1,924.90$ 452.25 $2,377.25$ 1.19 4.36 Ficus racemosa 0.619 33.60 32.76 7.70 40.46 0.02 0.07 Madhucaindica 0.619 $6,024.11$ $5,873.05$ $1,380.17$ $7.253.22$ 3.63 13.30 Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 $13,789.00$ $15,202.37$ $3,572.56$ $18,774.93$ 9.39 34.42 Syzgium cumini 0.669 $1,000.00$ $1,053.68$ 247.61 $1,301.29$ 0.65 2.39 Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia arjuna 1.189 $2,298.80$ $4,304.9$	Buchanania latifolia	0.458	546.13	393.95	92.58	486.53	0.24	0.89	
$ \begin{array}{cccc} Cochlospermum religiosum 0.270 & 422.20 & 179.54 & 42.19 & 221.73 & 0.11 & 0.41 \\ Diospyros melanoxylon & 0.678 & 83.60 & 89.27 & 20.98 & 110.25 & 0.06 & 0.20 \\ Eucalyptus globulus & 0.676 & 32,893.80 & 35,022.03 & 8,230.18 & 43,252.21 & 21.63 & 79.29 \\ Ficus benghalensis & 0.494 & 2,474.00 & 1,924.90 & 452.35 & 2,377.25 & 1.19 & 4.36 \\ Ficus racemosa & 0.619 & 33.60 & 32.76 & 7.70 & 40.46 & 0.02 & 0.07 \\ Madhucaindica & 0.619 & 6,024.11 & 5,873.05 & 1,380.17 & 7,253.22 & 3.63 & 13.30 \\ Mangifera indica & 0.750 & 311.40 & 367.84 & 86.44 & 454.28 & 0.23 & 0.83 \\ Schleichera oleosa & 1.010 & 267.20 & 425.05 & 99.89 & 524.93 & 0.26 & 0.96 \\ Semecarpus anacardium & 0.991 & 59.87 & 93.44 & 21.96 & 115.40 & 0.06 & 0.21 \\ Shorea robusta & 0.700 & 13,789.00 & 15,202.37 & 3,572.56 & 18,774.93 & 9.39 & 34.42 \\ Syzgium cumini & 0.669 & 1,000.00 & 1,053.68 & 247.61 & 1,301.29 & 0.65 & 2.39 \\ Tectona grandis & 0.577 & 14.00 & 12.72 & 2.99 & 15.71 & 0.01 & 0.03 \\ Terminalia arjuna & 1.189 & 2,298.80 & 4,304.91 & 1,011.65 & 5,316.56 & 2.66 & 9.75 \\ Terminalia tomentosa & 0.694 & 1,630.20 & 1,781.89 & 418.74 & 2,200.63 & 1.10 & 4.03 \\ Ziziphus mauritiana & 1.000 & 46.00 & 72.45 & 17.03 & 89.48 & 0.04 & 0.16 \\ \end{array}$	Butea monosperma	0.465	4,849.29	3,551.50	834.60	4,386.10	2.19	8.04	
Diospyros melanoxylon 0.678 83.60 89.27 20.98 110.25 0.06 0.20 Eucalyptus globulus 0.676 32,893.80 35,022.03 8,230.18 43,252.21 21.63 79.29 Ficus benghalensis 0.494 2,474.00 1,924.90 452.35 2,377.25 1.19 4.36 Ficus racemosa 0.619 33.60 32.76 7.70 40.46 0.02 0.07 Madhucaindica 0.619 6,024.11 5,873.05 1,380.17 7,253.22 3.63 13.30 Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 13,789.00 15,202.37 3,572.56 18,774.93 9.39 34.42 Syzygium cumini 0.669 <td>Casia siamea</td> <td>0.746</td> <td>227.80</td> <td>267.65</td> <td>62.90</td> <td>330.55</td> <td>0.17</td> <td>0.61</td> <td></td>	Casia siamea	0.746	227.80	267.65	62.90	330.55	0.17	0.61	
Eucalyptus globulus 0.676 32,893.80 35,022.03 8,230.18 43,252.21 21.63 79.29 Ficus benghalensis 0.494 2,474.00 1,924.90 452.35 2,377.25 1.19 4.36 Ficus racemosa 0.619 33.60 32.76 7.70 40.46 0.02 0.07 Madhucaindica 0.619 6,024.11 5,873.05 1,380.17 7,253.22 3.63 13.30 Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 13,789.00 15,202.37 3,572.56 18,774.93 9.39 34.42 Syzgium cumini 0.669 1,000.00 1,053.68 247.61 1,301.29 0.65 2.39 Tectona grandis 0.577 </td <td>Cochlospermum religiosum</td> <td>0.270</td> <td>422.20</td> <td>179.54</td> <td>42.19</td> <td>221.73</td> <td>0.11</td> <td>0.41</td> <td></td>	Cochlospermum religiosum	0.270	422.20	179.54	42.19	221.73	0.11	0.41	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Diospyros melanoxylon	0.678	83.60	89.27	20.98	110.25	0.06	0.20	
Ficus racemosa0.61933.6032.767.7040.460.020.07Madhucaindica0.6196,024.115,873.051,380.177,253.223.6313.30Mangifera indica0.750311.40367.8486.44454.280.230.83Schleichera oleosa1.010267.20425.0599.89524.930.260.96Semecarpus anacardium0.99159.8793.4421.96115.400.060.21Shorea robusta0.70013,789.0015,202.373,572.5618,774.939.3934.42Syzgium cumini0.6691,000.001,053.68247.611,301.290.652.39Tectona grandis0.57714.0012.722.9915.710.010.03Terminalia arjuna1.1892,298.804,304.911,011.655,316.562.669.75Terminalia tomentosa0.6941,630.201,781.89418.742,200.631.104.03Ziziphus mauritiana1.00046.0072.4517.0389.480.040.16	Eucalyptus globulus	0.676	32,893.80	35,022.03	8,230.18	43,252.21	21.63	79.29	
Madhucaindica 0.619 6,024.11 5,873.05 1,380.17 7,253.22 3.63 13.30 Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 13,789.00 15,202.37 3,752.56 18,774.93 9.39 34.42 Syzgium cumini 0.669 1,000.00 1,053.68 247.61 1,301.29 0.65 2.39 Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia arjuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 </td <td>Ficus benghalensis</td> <td>0.494</td> <td>2,474.00</td> <td>1,924.90</td> <td>452.35</td> <td>2,377.25</td> <td>1.19</td> <td>4.36</td> <td></td>	Ficus benghalensis	0.494	2,474.00	1,924.90	452.35	2,377.25	1.19	4.36	
Mangifera indica 0.750 311.40 367.84 86.44 454.28 0.23 0.83 Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 13,789.00 15,202.37 3,572.56 18,774.93 9.39 34.42 Syzygium cumini 0.669 1,000.00 1,053.68 247.61 1,301.29 0.65 2.39 Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia arijuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Ficus racemosa	0.619	33.60	32.76	7.70	40.46	0.02	0.07	
Schleichera oleosa 1.010 267.20 425.05 99.89 524.93 0.26 0.96 Semecarpus anacardium 0.991 59.87 93.44 21.96 115.40 0.06 0.21 Shorea robusta 0.700 13,789.00 15,202.37 3,572.56 18,774.93 9.39 34.42 Syzygium cumini 0.669 1,000.00 1,053.68 247.61 1,301.29 0.65 2.39 Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia ariyuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Madhucaindica	0.619	6,024.11	5,873.05	1,380.17	7,253.22	3.63	13.30	
Semecarpus anacardium0.99159.8793.4421.96115.400.060.21Shorea robusta0.70013,789.0015,202.373,572.5618,774.939.3934.42Syzygium cumini0.6691,000.001,053.68247.611,301.290.652.39Tectona grandis0.57714.0012.722.9915.710.010.03Terminalia arjuna1.1892,298.804,304.911,011.655,316.562.669.75Terminalia tomentosa0.6941,630.201,781.89418.742,200.631.104.03Ziziphus mauritiana1.00046.0072.4517.0389.480.040.16	Mangifera indica	0.750	311.40	367.84	86.44	454.28	0.23	0.83	
Shorea robusta 0.700 13,789.00 15,202.37 3,572.56 18,774.93 9.39 34.42 Syzygium cumini 0.669 1,000.00 1,053.68 247.61 1,301.29 0.65 2.39 Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia arjuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Schleichera oleosa	1.010	267.20	425.05	99.89	524.93	0.26	0.96	
Syzygium cumini 0.669 1,000.00 1,053.68 247.61 1,301.29 0.65 2.39 Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia arjuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Semecarpus anacardium	0.991	59.87	93.44	21.96	115.40	0.06	0.21	
Tectona grandis 0.577 14.00 12.72 2.99 15.71 0.01 0.03 Terminalia arjuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Shorea robusta	0.700	13,789.00	15,202.37	3,572.56	18,774.93	9.39	34.42	
Terminalia arjuna 1.189 2,298.80 4,304.91 1,011.65 5,316.56 2.66 9.75 Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Syzygium cumini	0.669	1,000.00	1,053.68	247.61	1,301.29	0.65	2.39	
Terminalia tomentosa 0.694 1,630.20 1,781.89 418.74 2,200.63 1.10 4.03 Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16		0.577	14.00	12.72	2.99	15.71	0.01	0.03	
Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Terminalia arjuna	1.189	2,298.80	4,304.91	1,011.65	5,316.56	2.66	9.75	
Ziziphus mauritiana 1.000 46.00 72.45 17.03 89.48 0.04 0.16	Terminalia tomentosa	0.694	1,630.20	1,781.89	418.74	2,200.63	1.10	4.03	
	Ziziphus mauritiana	1.000	46.00	72.45	17.03	89.48	0.04	0.16	
	<u>^</u>	18.12	71,306.37	75,312.86	17,698.52	93,011.38	46.51	170.50	Table 4.
Notes: SG – specific gravity (g cm ⁻³); V – volume (cm ³ ha ⁻¹); ABG - above ground biomass (g ha ⁻¹									Carbon stock

range

BGB – below ground biomass (g ha⁻¹); TB – total biomass (g ha⁻¹); C – carbon stock (kg Cha⁻¹); estimation at Bounsi CO₂ equivalent (kg CO₂/ha)

robusta but the values are lower than the values recorded for Doon Valley at Western Himalaya (Gautam et al., 2008; Mandal and Joshi, 2014) and other tropical forests (Ganguli et al., 2016). The species diversity index value in our study is comparable to Eastern Ghats, which is much higher than the value in our study (Reddy et al., 2008; Ganguli et al., 2016) and consistent with studies made by Saklani et al. (2018).

Correlation between biomass and volume of growing stock depicts dependency of total biomass on growing stock volume (Banka: $R^2 = 0.9269$, Bounsi: $R^2 = 0.9943$) where dbh and height are the predictor for volume of tree individuals. Positive correlation was also observed between volume, biomass, basal area of tree species with carbon stock (Banka range: $R^2 = 0.9269$ for Volume-C stock; $R^2 = 1$ for total biomass-C stock and $R^2 = 0.647$ for basal area-C stock; and Bounsi range: $R^2 = 1$ for volume, biomass and basal area with C stock). However, sometimes specific gravity of trees also contributes to the biomass; therefore the pattern for total biomass differs from volume pattern of tree species at Banka range (specific gravity of Cochlospermum religiosum is 0.270 g cm⁻³ that caused the lowering of AGB than Acacia auriculiformis and Terminalia bellerica at Banka range). Similar studies on biomass and C storage at Sathanur Reserve Forest of eastern ghats and Asola Bhatti Sanctuary in Northern Aravalli hills showed positive correlation between biomass and C storage where highest storage was contributed by Albizia amara and Anogeissus pendula, respectively (Kushwaha et al., 2014; Salunkhe et al., 2016; Jhariya, 2017). The C stock in our study shows lowered value, which is comparable to the values estimated

at Garhwal Himalaya (Mahato *et al.*, 2016) and Manipur (Thokchom and Yadava, 2017) and Tripura (Banik *et al.*, 2018) while the values are similar to the C stock estimated for North East India (Singh *et al.*, 2016). Lowered biomass in our study is relatively due to presence of young trees having <10 cm dbh, small bole size and often anthropogenic disturbances such as lopping and grazing, prevailing in the area caused removal or lowering of biomass, which

is similar with study at tropical deciduous forest of Madhya Pradesh, India (Salunkhe *et al.*, 2016; Dar *et al.*, 2019). However, Prevalence of edaphic factors with poor soil depth and soil structure is also responsible for low above ground biomass.

4.2 Carbon sequestration potential

With respect to the C stock recorded for all the trees enumerated in Banka and Bounsi range have potential to sequester 144.74 kg CO_2 ha⁻¹ (or 0.15 t CO_2 ha⁻¹) and 170.50 kg CO_2 ha⁻¹ (or 0.17 t CO_2 ha⁻¹), respectively. Therefore, extrapolating the amount of C stock and CO_2 sequestered in the total forest area enumerated it is about 51.8 t ha⁻¹ and 194.25 t CO_2 at Banka range and 12.56 t ha⁻¹ and 45.9 t CO_2 at Bounsi, respectively. The amount of C sequestered is much lower than compared to other tropical forests of North Western Ghats (Mandal and Joshi, 2014; Patel *et al.*, 2015; Salunkhe *et al.*, 2016; Banik *et al.*, 2018; Dar *et al.*, 2019). Lowered amount is contributed by lowered C stock, which indeed depends upon dbh and volume, which acts as an important indicator for C stock in trees. However, the dominant tree species *Shorea robusta* solely contributes to about 19% and 20% of total C stock of enumerated area at Banka and Bounsi forest range, respectively.

5. Conclusions

The study illustrates forest structure and pattern of distribution of trees in the area, which also determines the biomass and carbon stock pattern in the study area. From the survey, it is evident that most of the forest area is degraded and many of the area are restored through plantation and afforestation programs. Coppice Sal (Shorea robusta) is noticed in most of the forest area under two ranges and the forest undergoes its secondary successional stage supports the restoration of forests through afforestation. However, the prevalence of high biotic pressure in different pockets of the study area accompanied with edaphic factors causes reduced survival rate of recruited plants in terms of recruitment, growth and establishment. Lowered growing stock volume accompanied by lowered biomass is subjected to decreased C stock value compared to other forests of tropics, which is due to the presence of maximum trees under dbh class <10 cm. However, the valuation of these forests (area enumerated only) in terms of C sequestration (for present year of C stock estimation) applying international price @ US\$13 t⁻¹ CO₂ is estimated as US\$2,525.25 and US\$596.70 for Banka and Bounsi range, respectively. Therefore, these forests have potential to act as carbon sink but proper management and protection is required for young trees along with habitat restoration and biodiversity conservation of the entire forest ranges.

References

- Achard, F., Rene, B., Philippe, M., Hans-Jurgen, S., Bodart, C., Brink, A., Carboni, S., Desclee, B., Donnay, F., Eva, H., Lupi, A., Rasi, R., Seliger, R. and Simonetti, D. (2014), "Determination of tropical deforestation rates and related carbon losses from 1990 to 2010", *Global Change Biology*, Vol. 20, pp. 2540-2554.
- Ayyappan, N. and Parthasarthy, N. (1999), "Biodiversity inventory of trees in a large scale permanent plot of tropical evergreen Forest at Varagalaiar, Anamalai, Western Ghats, India", *Biodiversity* and Conservation, Vol. 8 No. 11, pp. 1533-1554.
- Banik, B., Deb, D., Deb, S. and Datta, B.K. (2018), "Assessment of biomass and carbon stock in Sal (Shorea robusta Gaertn.) forests under two management regimes in Tripura, Northeast India", Journal of Forest and Environmental Science, Vol. 34 No. 3, pp. 209-223.

Tropical dry deciduous forest of Bihar

EFCC 2,1	Chaturvedi, R.K., Raghubanshi, A.S. and Singh, J.S. (2011), "Carbon density and accumulation in woody species of tropical dry Forest in India", <i>Forest Ecology and Management</i> , Vol. 262 No. 8, pp. 1576-1588.
	Curtis, J.T. (1959), <i>The Vegetation of WI. An Ordination of Plant Communities</i> , University WI Press, Madison.
14	Curtis, J.T. and McIntosh, R.P. (1950), "The interrelations of certain analytic and synthetic phytosociological characters", <i>Ecology</i> , Vol. 31 No. 3, pp. 434-455.
	Dar, J.A., Kothandaraman, S., Raha, D., Kumar, A. and Khare, P.K. (2019), "Tree diversity, biomass and carbon storage in sacred groves of Central India", <i>Environmental Science and Pollution Research</i> , Vol. 26, pp. 37212-37227, doi: 10.1007/s11356-019-06854-9.
	De Jong, B.H.J., Ochoa-Gaona, S., Castillo-Santiago, M.A., Ramirez-Marcial, N. and Cairns, M.A. (2000), "Carbon flux and patterns of land-use/land-cover change in the Selva Lacandona, Mexico", <i>Ambio: A Journal of the Human Environment</i> , Vol. 29 No. 8, pp. 504-511.
	De Jong, B.H.J., Cairns, M.A., Haggerty, P.K., Ramirez-Marcial, N., Ochoa-Gaona, S., Mendoza-Vega, J., Gonzalez-Espinosa, M. and March-Mifsut, I. (1999), "Land-use change carbon flux between 1970s and 1990s in Central Highlands of Chiapas, Mexico", <i>Environmental Management</i> , Vol. 23 No. 3, pp. 373-385.
	Deka, J., Tripathi, O.P. and Khan, M.L. (2012), "High dominance of Shorea robusta gaertn. in alluvial plain Kamrup Sal Forest of Assam NE India", <i>International Journal of Ecosystem</i> , Vol. 2 No. 4, pp. 67-73.
	Diaz, S., Hector, A. and Wardle, D.A. (2009), "Biodiversity in Forest carbon sequestration initiatives: not just a side benefit", <i>Current Opinion in Environmental Sustainability</i> , Vol. 1 No. 1, pp. 55-60.
	Fahey, T.J., Woodbury, P.B., Battles, J.J., Goodale, C.L., Hamburg, S.P., Ollinger, S.V. and Woodall, C.W. (2010), "Forest carbon storage: ecology, management, and policy", <i>Frontiers in Ecology and the Environment</i> , Vol. 8 No. 5, pp. 245-252.
	FAO (2006), "Global Forest resources assessment 2005", FAO Forestry Paper 147, FAO, Rome.
	FAO (2012), "Global Forest land use change from 1990 to 2005", FAO Forestry Paper 169, FAO, Rome.
	Ganguli, S., Gupta (Joshi,), H. and Bhattacharya, K. (2016), "Vegetation structure and species diversity in Garh jungle sacred Forest, West Bengal, India", <i>International Journal of Environmental and</i> Agriculture Research, Vol. 2 No. 9, pp. 72-79.
	Gautam, M.K., Tripathi, A.K., Kamboj, S.K. and Manhas, R.K. (2008), "TWINSPAN classification of moist <i>Shorea robusta</i> gaertn. F. (Sal) forests with respect to regeneration", <i>Annals of Forestry</i> , Vol. 16, pp. 713-717.
	Gentry, A.H. (1992), "Tropical Forest biodiversity: Distributional patterns and their conservational significance", <i>Oikos</i> , Vol. 63 No. 1, pp. 19-28.
	Gibbs, H.K., Brown, S., Niles, J.O. and Foley, J.A. (2007), "Monitoring and estimating tropical forest carbon stocks: making REDD a reality", <i>Environmental Research Letters</i> , Vol. 2 No. 4, pp. 1748-9326.
	Gower, S.T., Vogt, K.A. and Grier, C.C. (1992), "Carbon dynamics of Rocky Mountain Douglas – fir: influence of water and nutrient availability", <i>Ecological Monographs</i> , Vol. 62 No. 1, pp. 43-65.
	Grace, P.R., Post, W.M. and Hennessy, K. (2006), "The potential impact of climate change on Australia's soil carbon resources", <i>Carbon Balance and Management</i> , Vol. 1 No. 1, pp. 1-14.
	Harris, N.L., Brown, S., Hagen, S.C., Saatchi, S.S., Petrova, S., Salas, W., Hansen, M.C., Potapov, P.V. and Lotsch, A. (2012), "Baseline map of carbon emissions from deforestation in tropical regions", <i>Science</i> , Vol. 336 No. 6088, pp. 1573-1576.
	Jhariya, M.K. (2017), "Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India", <i>Environmental Monitoring and Assessment</i> , Vol. 189 No. 10, p. 518.

- Keith, H., Lindenmayer, D.B., MacKey, B.G., Blair, D., Carter, L., Mc-Burney, L., Okada, S. and Konishi-Nagano, T. (2014), "Accounting for biomass carbon stock change due to wildfire in temperate Forest landscapes in Australia", *PLoSONE*, Vol. 9 No. 9.
- Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., Schlamadinger, B., Wunder, S. and Beach, R. (2008), "Global cost estimates of reducing carbon emissions through avoided deforestation", *Proceedings of the National Academy of Sciences*, Vol. 105 No. 30, pp. 10302-10307.
- Kushwaha, S.P.S., Nandy, S. and Gupta, M. (2014), "Growing stock and woody biomass assessment in Asola Bhatti wildlife sanctuary, Delhi, India", *Environmental Monitoring and Assessment*, Vol. 186 No. 9, p. 5911.
- Lal, M.K. and Singh, R. (2000), "Carbon sequestration potential of Indian forests", *Environmental Monitoring and Assessment*, Vol. 60 No. 3, p. 315.
- Mahato, S., Dasgupta, S. and Todaria, N.P. (2016), "Tree and soil carbon stock by community managed forests in Garhwal Himalaya", *Plant Archives*, Vol. 16 No. 2, pp. 805-811.
- Majumdar, K., Choudhary, B.K. and Datta, B.K. (2016), "Aboveground woody biomass carbon stocks potential in selected tropical Forest patches of Tripura northeast India", *Open Journal of Ecology*, Vol. 6 No. 10, pp. 598-612.
- Mandal, G. and Joshi, S.P. (2014), "Biomass accumulation and carbon sequestration of *Shorea robusta* and *Lantana Camara* from the dry deciduous forests of Doon valley, Western Himalaya, India", *International Journal of Environmental Biology*, Vol. 4 No. 2, pp. 157-169.
- Masera, O.R., Bellon, M.R. and Segura, G. (1995), "Forest management options for sequestering carbon in Mexico", *Biomass and Bioenergy*, Vol. 8 No. 5, pp. 357-367.
- Misra, R. (1968), Ecology Work Book, Oxford and IBH Publishing. New Delhi, p. 244.
- Mokany, K., Raison, R.J. and Prokushkin, A.S. (2006), "Critical analysis of root: shoot ratios in terrestrial biomes", *Global Change Biology*, Vol. 12 No. 1, pp. 84-96.
- Patel, A., Godbole, A. and Sarnaik, J. (2015), "Estimation of c-stock in private Forest of North-Western Ghats, Maharashtra", *Bioscience Discovery*, Vol. 6 No. 1, pp. 27-31.
- Philips, E.A. (1959), "Methods of vegetation study", Henery Halt and Co. Inc., p. 105.
- Puyravaud, J.P., Davidar, P. and Laurance, W.F. (2010), "Cryptic destruction of India's native forests", *Conservation Letters*, Vol. 3 No. 6, pp. 390-394.
- Raturi, G.P. (2012), "Forest community structure along an altitudinal gradient of district Rudraprayag of Garhwal Himalaya", *Ecologia*, Vol. 2 No. 3, pp. 76-84.
- Reddy, C., Babar, S., Giriraj, A., Reddy, K.N. and Rao, T. (2008), "Structure and floristic composition of tree diversity in tropical dry deciduous Forest of Eastern ghats, Southern Andhra Pradesh, India", Asian Journal of Scientific Research, Vol. 1 No. 1, pp. 57-64.
- Rout, S.D., Panda, S.K. and Panda, T. (2018), "Phytosociological and floristic evaluation of Kuldiha wildlife sanctuary, Odisha, India", *Tropical Plant Research*, Vol. 5 No. 3, pp. 419-430.
- Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Buermannb, W., Lewisg, S.L., Hagen, S., Petrova, S., Whiteh, L., Silmani, M. and Morel, A. (2011), "Benchmark map of forest carbon stocks in tropical regions across three continents", *Proceedings of the National Academy of Sciences USA*.
- Saklani, A., Navneet and Bhandari, B.S. (2018), "Phytosociological studies, biodiversity conservation in a subtropical moist deciduous Forest of Rajaji tiger reserve; Uttarakhand, India", *International Journal of Research and Analytical Reviews*, Vol. 5 No. 3, pp. 39-51.
- Salimon, C.I., Putz, F.E., Menezes-Filho, L., Anderson, A., Silveira, M., Brown, I.F. and Oliveira, L.C. (2011), "Estimating state-wide biomass carbon stocks for a REDD plan in Acre, Brazil", *Forest Ecology and Management*, Vol. 262 No. 3, pp. 555-562.

Tropical dry deciduous forest of Bihar

15

EFCC 2,1	Salunkhe, O., Khare, P.K., Sahu, T.R. and Singh, S. (2016), "Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach", <i>Tropical Ecology</i> , Vol. 57 No. 2, pp. 153-161.
	Shannon, C.E. and Wiener, W. (1963), <i>The Mathematical Theory of Communication</i> , University Illinois Press, Urbana, IL.
16	Sheikh, M.A., Kumar, M., Bussman, R.W. and Todaria, N.P. (2011), "Forest carbon stocks and fluxes in physiographic zones of India", <i>Carbon Balance and Management</i> , Vol. 6 No. 15, pp. 1-10.
10	Shi, H. and Singh, A. (2002), "An assessment of biodiversity hotspots using remote sensing and GIS", <i>Journal of the Indian Society of Remote Sensing</i> , Vol. 30 Nos 1/2, pp. 105-112.
	Singh, J.S., Singh, K.P. and Agrawal, M. (1991), "Environmental degradation of the Obra-Renukoot Singrauli area, India, and its impact on natural and derived ecosystems", <i>The Environmentalist</i> , Vol. 11 No. 3, pp. 171-180.
	Singh, V., Gupta, S.R. and Singh, N. (2016), "Carbon sequestration potential of tropical dry deciduous forests in Southern Haryana, India", <i>International Journal of Ecology and Environmental Science</i> , Vol. 42, pp. 51-64.
	Thokchom, A. and Yadava, P.S. (2017), "Biomass and carbon stock along an altitudinal gradient in the Forest of Manipur, northeast India", <i>Tropical Ecology</i> , Vol. 58 No. 2, pp. 389-396.
	UNFCCC (1992), "United nations framework convention on climate change", available at: http://unfccc. int/resource/docs/convkp/conveng.pdf

Corresponding author Saroni Biswas can be contacted at: saroni.bsws@gmail.com

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight.com