To read this content please select one of the options below:

A Krylov enhanced proper orthogonal decomposition method for frequency domain model reduction

David Binion (Applied Motion Systems, Inc, Vancouver, Washington, USA)
Xiaolin Chen (Department of Mechanical Engineering, Washington State University, Vancouver, Washington, USA)

Engineering Computations

ISSN: 0264-4401

Article publication date: 18 April 2017




This paper aims to describe a method for efficient frequency domain model order reduction. The method attempts to combine the desirable attributes of Krylov reduction and proper orthogonal decomposition (POD) and is entitled Krylov enhanced POD (KPOD).


The KPOD method couples Krylov’s moment-matching property with POD’s data generalization ability to construct reduced models capable of maintaining accuracy over wide frequency ranges. The method is based on generating a sequence of state- and frequency-dependent Krylov subspaces and then applying POD to extract a single basis that generalizes the sequence of Krylov bases.


The frequency response of a pre-stressed microelectromechanical system resonator is used as an example to demonstrate KPOD’s ability in frequency domain model reduction, with KPOD exhibiting a 44 per cent efficiency improvement over POD.


The results indicate that KPOD greatly outperforms POD in accuracy and efficiency, making the proposed method a potential asset in the design of frequency-selective applications.



Binion, D. and Chen, X. (2017), "A Krylov enhanced proper orthogonal decomposition method for frequency domain model reduction", Engineering Computations, Vol. 34 No. 2, pp. 285-306.



Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles