To read the full version of this content please select one of the options below:

Atomic-scale simulation of hugoniot relations and energy dissipation of polyurea under high-speed shock

Kaili Yao (School of Aerospace Engineering, Tsinghua University, Beijing, China)
Dongyang Chu (School of Aerospace Engineering, Tsinghua University, Beijing, China)
Ting Li (Department of Chemical Engineering, Tsinghua University, Beijing, China)
Zhanli Liu (School of Aerospace Engineering, Tsinghua University, Beijing, China)
Bao-Hua Guo (Department of Chemical Engineering, Tsinghua University, Beijing, China)
Jun Xu (Department of Chemical Engineering, Tsinghua University, Beijing, China)
Zhuo Zhuang (School of Aerospace Engineering, Tsinghua University, Beijing, China)

Engineering Computations

ISSN: 0264-4401

Article publication date: 30 June 2020

Issue publication date: 15 June 2021

220

Abstract

Purpose

The purpose of this paper is to calculate the Hugoniot relations of polyurea; also to investigate the atomic-scale energy change, the related chain conformation evolution and the hydrogen bond dissociation of polyurea under high-speed shock.

Design/methodology/approach

The atomic-scale simulations are achieved by molecular dynamics (MD). Both non-equilibrium MD and multi-scale shock technique are used to simulate the high-speed shock. The energy dissipation is theoretically derived by the thermodynamic and the Hugoniot relations. The distributions of bond length, angle and dihedral angle are used to characterize the chain conformation evolution. The hydrogen bonds are determined by a geometrical criterion.

Findings

The Hugoniot relations calculated are in good agreement with the experimental data. It is found that under the same impact pressure, polyurea with lower hard segment content has higher energy dissipation during the shock-release process. The primary energy dissipation way is the heat dissipation caused by the increase of kinetic energy. Unlike tensile simulation, the molecular potential increment is mainly divided into the increments of the bond energy, angle energy and dihedral angle energy under shock loading and is mostly stored in the soft segments. The hydrogen bond potential increment only accounts for about 1% of the internal energy increment under high-speed shock.

Originality/value

The simulation results are meaningful for understanding and evaluating the energy dissipation mechanism of polyurea under shock loading, and could provide a reference for material design.

Keywords

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (Grant No. 11972210).

Citation

Yao, K., Chu, D., Li, T., Liu, Z., Guo, B.-H., Xu, J. and Zhuang, Z. (2021), "Atomic-scale simulation of hugoniot relations and energy dissipation of polyurea under high-speed shock", Engineering Computations, Vol. 38 No. 3, pp. 1209-1225. https://doi.org/10.1108/EC-10-2019-0482

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles